
Microsoft Office 97/Visual Basic Programmer's Guide Page 1 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Home
Introduction

Getting Started with Visual Basic
Using Online Help
Other Resources
How This Book Is Organized
Document Conventions

Chapter 1: Programming Basics
Writing, Editing, and Running Code in the Visual Basic Editor
Variables, Constants, and Data Types

Chapter 2: Understanding Object Models
Overview of Object Models
Automating a Task by Using Objects
Programming Another Application's Objects

Chapter 3: Microsoft Access Objects
Objects Available in Microsoft Access
The Microsoft Access Objects
The Application Object
The Form Object and the Forms Collection
The Report Object and the Reports Collection
The Control Object and the Controls Collection
The Module Object and the Modules Collection
The Reference Object and the References Collection
The DoCmd Object
The Screen Object

Chapter 4: Microsoft Excel Objects
Working with the Application Object
Working with the Workbook Object
Working with the Range Object
Working with Events

Chapter 5: Microsoft Outlook Objects
The Outlook Object Model
Working with Outlook Folders
Working with Outlook Items and Events
Using Automation and VBScript

Chapter 6: Microsoft Powerpoint Objects
Working with the Application Object
Working with the Presentation Object
Working with the Slide, SlideRange, and Slides Objects

Microsoft Office 97/Visual Basic Programmer's Guide Page 2 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Working with the Selection Object
Working with the View and SlideShowView Objects
Controlling How Objects Behave During a Slide Show

Chapter 7: Microsoft Word Objects
Working with the Application Object
Working with the Document Object
Working with the Range Object
Working with the Selection Object
Working with the Find and Replacement Objects
Working with Table, Column, Row, and Cell Objects
Working with Other Common Objects
Modifying Word Commands
Determining Whether an Object Is Valid
Working with Events
Using Auto Macros
Using Automation

Chapter 8: Menus And Toolbars
Tools for Modifying the User Interface
Scope of Changes to the User Interface
Choosing the Best User-Interface Enhancement
The Menu System
Design-Time Modifications to the Menu System
Run-Time Modifications to the Menu System
Toolbars
Design-Time Modifications to Toolbars
Run-Time Modifications to Toolbars
Menu Item and Toolbar Control IDs

Chapter 9: Microsoft Office Assistant
Using the Microsoft Office Assistant
Using the Microsoft Office Assistant Balloon

Chapter 10: Shapes And The Drawing Layer
Understanding the Shape, ShapeRange, and Shapes Objects
Drawing a Shape on a Document, Worksheet, or Slide
Editing a Shape
Working with OLE Objects on a Document, Worksheet, or Slide
Working with More Than One Shape

Chapter 11: Data Access Objects
Working with DAO Objects
Using DAO with Microsoft Jet
Accessing ODBC Data
Using DAO with ODBCDirect
Using ODBCDirect

Chapter 12: Activex Controls And Dialog Boxes
Designing Custom Dialog Boxes
Using Custom Dialog Boxes
Working with Controls on a Document, Sheet, or Slide
Working with Controls Programmatically

Chapter 13: Optimizing For Size And Speed

Microsoft Office 97/Visual Basic Programmer's Guide Page 3 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

General Optimization Strategies
Strategies for Optimizing Microsoft Excel
Strategies for Optimizing Microsoft Word

Chapter 14: Debugging And Error Handling
How to Handle Errors
Designing an Error Handler
The Error-Handling Hierarchy
Testing Error Handling by Generating Errors
Inline Error Handling
Centralized Error Handling
Turning Off Error Handling
Handling Errors in Referenced Objects
Approaches to Debugging
Avoiding Bugs
Design Time, Run Time, and Break Mode
Using the Debugging Windows
Using Break Mode
Running Selected Portions of Your Application
Monitoring the Call Stack
Testing Data and Procedures with the Immediate Window
Special Debugging Considerations
Tips for Debugging

Chapter 15: Developing Applications For The Internet And World Wide Web
Developing Internet Applications
Internet Terms and Concepts
Working with Hyperlinks
Saving Documents and Objects as HTML
Opening and Importing HTML Data
Using the WebBrowser Control
Using the Internet Transfer Control
Using the WinSock Control
Setting Up a Personal Web Server

Appendix A: Switching From The Microsoft Excel 4.0 Macro Language
Information for Users of Microsoft Excel 4.0 Macros
Visual Basic Equivalents for Common Macro Functions
Creating Custom Commands and Dialog Boxes Using Visual Basic

Appendix B: Switching From WordBasic
Logistical Programming Changes in Microsoft Word 97
Conceptual Differences Between WordBasic and Visual Basic
Determining Which Properties or Methods to Use
Using WordBasic Statements and Functions
Selection Object vs. Range Object
Miscellaneous Changes
Example Macros

Microsoft Office 97/Visual Basic Programmer's Guide

Introduction

Microsoft Office 97/Visual Basic Programmer's Guide Page 4 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Contents
� Getting Started with Visual Basic
� Using Online Help
� Other Resources
� How This Book Is Organized
� Document Conventions

Welcome to Microsoft® Visual Basic® for Applications version 5.0, the shared
development environment that provides you the means to accomplish a wide
range of programmatic results — everything from automating individual tasks to
creating fullfledged custom applications in Microsoft Office 97. Whatever your
programming background — Visual Basic (Standard, Professional, or Enterprise
Edition), a previous version of Visual Basic for Applications, WordBasic, Access
Basic, XLM, or another programming language — you'll find a number of
powerful new capabilities in this version of Visual Basic for Applications,
including those described in the following paragraphs.

Programmatic access to the functionality of each Office
application Each Office application exposes its functionality as a set of
programmable objects. Using Visual Basic for Applications gives you access to
these objects, making it possible for you to do anything in the application
programmatically that you can do manually with the user interface.

Consistent syntax across applications You no longer need to learn a
different programming language for each Office application. This makes it much
easier for you to apply the skills you acquire while learning to program one
application to other Office applications. This uniformity of language also makes
it easier to create solutions that involve more than one Office application and to
reuse code across applications.

A powerful, fullfeatured development environment The integrated
development environment of Visual Basic for Applications is available with
Microsoft Excel, Microsoft Word, and Microsoft PowerPoint®; it looks exactly the
same no matter which of these applications you start it from. This integrated
programming environment runs in its own window, and it includes advanced
debugging features, property- and codeediting features (including compiletime
syntax checking and tools for constructing statements), an enhanced Object
Browser, and code organization and tracking features.

Support for ActiveX controls You now have the ability to add ActiveX™
controls — prebuilt, reusable software components that have interactive
capabilities — to dialog boxes and to embed them in documents.

A new way to create dialog boxes You can use Microsoft Forms to create
custom dialog boxes in any application that supports the integrated
development environment.

Support for integration with databases, messaging systems, and the
Internet You have programmatic access to databases (using Data Access
Objects, or DAO), to messaging (using the Microsoft Outlook™ object model),
and to the Internetready features of the Office applications (using each
application's object model).

Microsoft Office 97/Visual Basic Programmer's Guide Page 5 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Getting Started with Visual Basic

Use the following suggestions to get the most from the time you spend learning
Visual Basic for Applications (referred to as "Visual Basic" for the remainder of
this book).

Learn Microsoft Office first The more you know about Office, the better
prepared you'll be to venture into Visual Basic. Most Visual Basic procedures
perform a sequence of actions in Office, and most instructions in a procedure
are equivalent to Office commands or actions. Consequently, working with
Visual Basic is a little like working with Office without a user interface; instead
of choosing commands and selecting options in dialog boxes, you write Visual
Basic instructions. The statements and functions you use to write instructions
are much easier to understand if you're already familiar with the features they
represent in Office.

Also, if you know Office well, you can better answer the question you're most
likely to ask yourself when writing a macro: "What's the best way to do this?"
People have been known to write long macros for tasks that could have been
handled by a single Office command.

Learn what you need, when you need it Learn what you need for the task
at hand. Visual Basic can seem overwhelming at first, particularly if you don't
have any experience with programming languages. A great way to begin
learning Visual Basic is to investigate how to accomplish a particular task
programmatically. As you gain experience writing procedures that automate
different types of tasks, you'll cover a lot of ground.

Use the macro recorder The macro recorder — a feature that's available with
Microsoft Excel, Word, and PowerPoint — can record the corresponding Visual
Basic instruction for virtually every action you take in Office. You can use the
macro recorder to see how actions performed in Office translate into Visual
Basic instructions, and vice versa. Also, you'll find that recording part of a
macro is often faster and easier than writing out the instructions.

Use Visual Basic Help Help is a powerful tool for learning Visual Basic. In a
Visual Basic module, you can type a keyword and, with the insertion point
positioned somewhere in the keyword, press F1 to immediately display the
Visual Basic Help topic for that keyword. Most Visual Basic Help topics for
keywords include examples you can copy and paste into your macros. For more
information, see the following section, "Using Online Help."

Using Online Help

Microsoft Office provides an extensive Help system for the Visual Basic
language, the objects that Office supports, and the properties and methods of
those objects.

Top

Top

Microsoft Office 97/Visual Basic Programmer's Guide Page 6 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

If you clicked Typical when you installed Office, you'll need to run Setup again
to install Help for Visual Basic for the applications you want to program in.

You can access Visual Basic Help in any module in the Visual Basic Editor or in a
Microsoft Access module in any of the following three ways:

� Position the insertion point anywhere in an object name, property name,
method name, event name, function name, or other keyword you've
typed, and then press F1 to get contextsensitive Help for that keyword.

� Click Microsoft Visual Basic Help (in the Visual Basic Editor) or
Microsoft Access Help (in Microsoft Access) on the Help menu. You can
then ask the Office Assistant a question, click Search, and click the topic
you want to read in the What would you like to do? balloon.

� Click Object Browser on the View menu, and then either press F1 or
click the Help button (the questionmark button above the Members of
box) for information about the selected object, method, property, event,
or function.

After you've displayed a Help topic, you can click the Help Topics button in the
Help window to display the Help Topics dialog box, which contains three tabs:
Contents, Index, and Find. You can then either look up a specific topic or
Visual Basic term on the Contents or Index tab or perform a fulltext search
from the Find tab.

Note In the Visual Basic Editor, clicking Contents and Index on the Help menu
displays the contents and index of Help for the Visual Basic Editor itself. From
the Contents tab in Visual Basic Editor Help, you can display the contents and
index of Visual Basic Help for Microsoft Excel, Word, or PowerPoint by double-
clicking the book title that includes the name of the application you're working
in (for example, "Microsoft Word Visual Basic Reference"), and then double-
clicking the shortcut in that book (for example, "Shortcut to Microsoft Word
Visual Basic Reference"). The Help Topics dialog box should reappear, displaying
the contents and index for Visual Basic Help for your application.

Other Resources

Following are descriptions of the various resources you can use to get additional
information about programming with Visual Basic in Office.

Technical Support Services

Microsoft offers a variety of support options to help you get the most from your
Microsoft product. For more information about available support services, see
Getting Results with Microsoft Office 97.

For basic technical support outside the United States, contact the Microsoft
subsidiary office that serves your area. Microsoft subsidiary offices and the

Top

Microsoft Office 97/Visual Basic Programmer's Guide Page 7 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

countries they serve are listed in Getting Results with Microsoft Office 97.

Microsoft Office Developer Forum

You can get the latest information about developing custom applications for
Office at the Microsoft Office Developer Forum Web site at
http://www.microsoft.com/officedev/

Microsoft Press Books

In addition to the Microsoft Office 97/Visual Basic Programmer's Guide, Microsoft
Press® offers a number of books to help you get started programming in Visual
Basic. These books help you learn how to automate Office tasks and create
custom applications as easily and as quickly as possible. The easytofollow
lessons include clear objectives and realworld business examples so that you
can learn exactly what you need to know, at your own speed.

� Microsoft Word 97/Visual Basic Step by Step, ISBN 1572313889, by
Michael Halvorson and Chris Kinata

� Microsoft Excel 97/Visual Basic Step by Step, ISBN 1572313188, by Reed
Jacobson

� Microsoft Access 97/Visual Basic Step by Step, ISBN 1572313196, by
Evan Callahan

� Microsoft Office 97/Visual Basic Step by Step, ISBN: 1572313897, by
David Boctor

For a technical exploration of the wide range of line-of-business development
opportunities available to Office 97 developers, see the Microsoft Office 97
Developer's Handbook, ISBN 1-57231-440-0, by Christine Solomon.

Building Microsoft Outlook 97 Applications, ISBN 1-57231-5736-9, by Peter
Krebs is a results-oriented book that offers both the nonprogrammer and the
experienced IS professional the information, strategies, and sample applications
they need to get started building useful groupware and mail-enabled
applications.

For information about other Microsoft Press titles, see the Microsoft Press Web
site at http://www.microsoft.com/mspress/

Mastering Office 97 Development

Mastering Office 97 Development is a CD-ROM product available from Microsoft.
Use this self-paced training tool to develop real-world skills that you can put to
work right away. Become proficient with Visual Basic for Applications, Office 97
object modules, and more. More than 40 hours of labs, demos, sample code,
and articles — plus valuable tips and techniques — get you up to speed fast.
Use the powerful Boolean search engine and comprehensive index to find just
information you need when you need it. Narrated demonstrations and
interactive lab exercises walk you through complex concepts and help you

Microsoft Office 97/Visual Basic Programmer's Guide Page 8 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

design your own Office 97-based applications.

How This Book Is Organized

The chapters in this book cover basic concepts pertaining to object models and
Visual Basic programming, the object models for the Office applications, and
major feature areas of Visual Basic.

Chapter 1, "Programming Basics," provides a brief overview of the mechanics of
writing Visual Basic code.

Chapter 2, "Understanding Object Models," is an introduction to the concept of
programmable object models.

Chapter 3, "Microsoft Access Objects," discusses the Microsoft Access object
model in detail.

Chapter 4, "Microsoft Excel Objects," discusses the Microsoft Excel object model
in detail.

Chapter 5, "Microsoft Outlook Objects," discusses the Microsoft Outlook object
model in detail.

Chapter 6, "Microsoft PowerPoint Objects," discusses the Microsoft PowerPoint
object model in detail.

Chapter 7, "Microsoft Word Objects," discusses the Microsoft Word object model
in detail.

Chapter 8, "Menus and Toolbars," and Chapter 12, "ActiveX Controls and Dialog
Boxes," show you how to add interactive, custom userinterface elements to your
Visual Basic applications.

Chapter 9, "Microsoft Office Assistant" discusses the Office Assistant object
model in detail.

Chapter 10, "Shapes and the Drawing Layer," discusses the Office Art object
model in detail.

Chapter 11, "Data Access Objects," explains how to use Data Access Objects
(DAO) to import and export information stored in a database.

Chapter 13, "Optimizing for Size and Speed," provides several easy techniques
that can make your Visual Basic code faster and more concise.

Chapter 14, "Debugging and Error Handling," shows you how to find and
eliminate bugs in your code before you run it and how to handle errors that
occur while your code is running.

Chapter 15, "Developing Applications for the Internet and World Wide Web,"

Top

Microsoft Office 97/Visual Basic Programmer's Guide Page 9 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

provides information about how to control the new Internetready features in
Office applications programmatically.

The appendixes provide helpful information for experienced users of XLM or
WordBasic who are switching to Visual Basic.

Document Conventions

This book uses the typographic conventions listed in the following table. You
might not recognize all the terms or Visual Basic keywords yet, but you'll learn
more about them later.

Top

Example of convention Description

setup Words or characters you're instructed to type
are formatted as bold.

Sub, If, ChDir, MsgBox, True,
Add, Height, Application,
Range, Row

Bold words with the initial-letter capitalization
indicate either a language-specific term (a
property, method, event, or object name),
another Visual Basic keyword, or an interface
element (such as a menu command or a
toolbar button).

object In text, italic type indicates important new
terms, usually the first time they occur in the
book.

PropertyName In code syntax, italic type indicates
placeholders for information you're to supply.

ENTER Small capital letters are used for the names of
keys and key combinations, such as ENTER and
CTRL+R.

CTRL+V A plus sign (+) between key names indicates a
key combination, or shortcut keys. For
example, CTRL+V means to hold down the
CTRL key while pressing the V key.

DOWN ARROW Individual arrow keys are referred to by the
direction of the arrow on the key (LEFT, RIGHT,
UP, or DOWN). The phrase "arrow keys" is used
to describe these keys collectively.

BACKSPACE, HOME Other navigational keys are referred to by their
specific names.

myVar This font is used for example code.

Sub StockSale ()
 .
 .
 .
End Sub

A column of three periods indicates that part of
an example has been intentionally omitted.

Microsoft Office 97/Visual Basic Programmer's Guide Page 10 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Contents
� Writing, Editing, and Running Code in the Visual Basic Editor
� Variables, Constants, and Data Types
� Control Structures

This chapter introduces you to the fundamentals of the Visual Basic for
Applications programming language: how to get to the Visual Basic
programming environment and how to write, edit, store, and run code in that
environment. This chapter also briefly discusses the control structures, data
types, and builtin constants available to Visual Basic programmers.

Note The information in this chapter applies to the integrated development
environment of Visual Basic for Applications in Microsoft Excel 97, Word 97, and
PowerPoint 97. For information about writing Visual Basic code in Microsoft
Access 97, see Building Applications with Microsoft Access 97, available in
Microsoft Access 97 and Microsoft Office 97, Developer Edition. An online
version of Building Applications with Microsoft Access 97 is available in the
Value Pack on CDROM in Microsoft Access 97 and Microsoft Office 97,
Professional Edition. For information about writing VBScript code in Microsoft
Outlook 97, see Chapter 5, "Microsoft Outlook Objects," and Building Microsoft
Outlook 97 Applications by Peter Krebs, available from Microsoft Press (ISBN 1-
57231-5736-9).

Writing, Editing, and Running Code in the
Visual Basic Editor

Microsoft Excel 97, Word 97, and PowerPoint 97 come equipped with a full-
featured development environment called the Visual Basic Editor. Using the
Visual Basic Editor, you can create, edit, debug, and run code associated with
Microsoft Office documents. To open the Visual Basic Editor, click the Visual
Basic Editor button on the Visual Basic toolbar.

A First Look at the Visual Basic Editor

If you're used to writing, editing, and debugging code in a macroediting window
within the Word application window, on an XLM macro sheet, or on a module in
a Microsoft Excel workbook, the Visual Basic Editor may seem complex to you
the first time you open it, with many windows and buttons you aren't familiar
with. This section explains some of these features of the Visual Basic Editor.

Top

C H A P T E R 1 Microsoft Office 97/Visual Basic Programmer's Guide

Programming Basics

Microsoft Office 97/Visual Basic Programmer's Guide Page 11 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

For information about a particular window in the Visual Basic Editor, click in the
window and then press F1 to open the appropriate Help topic. To see the Help
topic for any other element of the Visual Basic Editor, such as a particular
toolbar button, search Help for the name of the element.

The Properties Window

A property is a characteristic of an object, such as the object's color or caption.
You set a property to specify a characteristic or behavior of an object. For
example, you can set the ShowSpellingErrors property of a Word document to
True to show spelling errors in the document.

You can use the Properties window to set the properties of an object at design
time. The Properties window is very useful when you're working with custom
dialog boxes and ActiveX controls. For more information about using the
Properties window to set properties of dialog boxes and controls, see
Chapter 12, "ActiveX Controls and Dialog Boxes." For most objects, however,
it's easier to set these properties at design time by using familiar commands in
the user interface. For example, you can set the ShowSpellingErrors property
of a Word document to True by selecting the Hide spelling errors in this
document check box on the Spelling & Grammar tab in the Options dialog
box (Tools menu).

If you don't think you'll be using the Properties window right now, you can
close it to simplify your work space a little. You can open it again at any time by
clicking Properties Window on the View menu.

The Project Explorer

Microsoft Office 97/Visual Basic Programmer's Guide Page 12 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

All the code associated with a workbook, document, template, or presentation is
stored in a project that's automatically stored and saved with the workbook,
document, template, or presentation. In the Project Explorer of the Visual
Basic Editor, you can view, modify, and navigate the projects for every open or
referenced workbook, document, template, or presentation. You can resize the
Project Explorer and either dock it to or undock it from any of the sides of the
Visual Basic Editor window to make it easier to use.

Note In Word, because the Normal template is available from every Word
document, there's always a project for Normal in the Project Explorer.

Within a project, there can be application objects that have events associated
with them, custom dialog boxes (called forms in the Project Explorer),
standard modules, class modules, and references.

Tip Folders in the Project Explorer divide project elements into categories. If
you don't see any folders, click the Toggle Folders button at the top of the
Project Explorer.

In the Project Explorer, there's one project for each open or referenced
workbook, document, template, or presentation. In each project, you may find
objects (such as Document objects, Workbook objects, and Worksheet
objects) that recognize events; forms (also called UserForms), which are custom
dialog box interfaces and the code that controls how the user interacts with a
particular dialog box; standard modules, which contain code that isn't
associated with a particular object or form; class modules, which contain
information about a custom object type; and references to other projects. To
see the code in a module or the code associated with an object or form, click the

Microsoft Office 97/Visual Basic Programmer's Guide Page 13 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

element in the Project Explorer, and then click the View Code button at the
top of the Project Explorer. To see the user interface for a particular object or
form, click the object or form in the Project Explorer, and then click the View
Object button at the top of the Project Explorer.

The Code Window

To view the code in a project, go to the Project Explorer, click the element
that contains the code, and then click the View Code button at the top of the
Project Explorer.

Tip If you want to be able to see more than one procedure in the code window
at a time, select the Default to Full Module View check box on the Editor tab
in the Options dialog box (Tools menu). To view just one procedure at a time,
clear this check box.

You can navigate the Code window by using the items listed in the Object and
Procedure boxes at the top of the window. In the Object box, click (General),
and then click a procedure name in the Procedure box to see a procedure that
isn't associated with a specific event. In the Object box, click an object, and
then click an event in the Procedure box to see the code that runs when a
specific event occurs.

Making Room in the Visual Basic Editor

If all you want to do is write a simple procedure or edit a macro you've
recorded, you may want to forego some of the advanced features of the Visual
Basic Editor in the interest of a simpler workspace. Here are a few ways you can
simplify your coding environment:

� Close the Properties window. If you aren't working with custom dialog
boxes or ActiveX controls, the Properties window probably won't be of
much use to you. To reopen Properties window, just click Properties
Window on the View menu.

� Hide any toolbars you aren't currently using. To redisplay the Debug,
Edit, Standard, or UserForm toolbar, rightclick the Visual Basic Editor
menu bar, and then click the name of the toolbar you want to display.

� If you're only working with code in a standard module and you don't need
to navigate to other code in the project or to code in other projects,
consider closing the Project Explorer. To reopen the Project Explorer,
just click Project Explorer on the View menu.

Recording a Macro

You can use the macro recorder to translate userinterface actions into Visual
Basic code. Recording a simple macro can give you a jump start on creating a
more complex macro, and can help you become familiar with the objects,
properties, and methods of an application.

To record a macro

Microsoft Office 97/Visual Basic Programmer's Guide Page 14 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

1. To display the Visual Basic toolbar, point to Toolbars on the View menu
in your application window (not in the Visual Basic Editor), and then click
Visual Basic if it isn't already selected.

2. On the Visual Basic toolbar, click the Record Macro button.

3. In the Record Macro dialog box, replace the default macro name in the
Macro name box if you want, and click OK.

You can use the Store macro in box to choose where your macro will be
stored. For now, click This Workbook in Microsoft Excel, All Documents
(Normal.dot) in Word, or the name of the active presentation in
PowerPoint.

4. Perform the actions for which you want to generate Visual Basic code.

5. On the Stop Recording toolbar, click the Stop Recording button.

Your macro has been recorded. To look at the macro code, point to Macro on
the Tools menu, and then click Macros. In the Macros dialog box, select the
appropriate macro name, and then click Edit.

Getting Around in Your Projects

You use the Project Explorer to navigate to any procedure in any open project.
Start by finding the object that contains your macro. Most general procedures,
including recorded macros, are stored in a standard module. If you have folders
displayed in the Project Explorer, standard modules are located in the
Modules folder.

Tip If you don't see folders in the Project Explorer, click the Toggle Folders
button to display them.

After you locate the object that contains your code, doubleclick the object to
view the procedures it contains. You can use this method to get to either
procedures you've written from scratch or macros you've recorded.

Where a recorded macro is stored depends on what location you specified in the
Store macro in box in the Record Macro dialog box when you recorded your
macro. In Microsoft Excel, if you clicked This Workbook in the Store macro in
box when you recorded your macro, your macro will be stored in Module1 in the
Modules folder of the project for the workbook you recorded the macro in. In
Word, if you clicked All documents (Normal.dot) in the Store macro in box
when you recorded your macro, your macro will be stored in the NewMacros
module in the Modules folder of the Normal project. In PowerPoint, if you clicked
the name of the active presentation in the Store macro in box when you
recorded your macro, your macro will be stored in Module1 in the Modules folder
of the project for the presentation you recorded the macro in.

Tip If you want to be able to see more than one procedure in the code window
at a time, make sure that the Default to Full Module View check box is
selected on the Editor tab in the Options dialog box (Tools menu). Otherwise,
you have to use the Procedure box in the code window to move from one

Microsoft Office 97/Visual Basic Programmer's Guide Page 15 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

procedure to another.

Writing a New Procedure

If you want to write code that isn't associated with a specific object or event,
you can create a procedure in a standard module in the Visual Basic Editor. A
procedure is a unit of code enclosed either between the Sub and End Sub
statements or between the Function and End Function statements.

To create a blank standard module, go to the Project Explorer, click anywhere
in the project you want to add the module to, and then click Module on the
Insert menu.

To open an existing standard module, select the module in the Project
Explorer, and then click the View Code button in the Project Explorer.

To add a procedure to a module, select the module in the Project Explorer,
click Procedure on the Insert menu, select whatever options you want in the
Add Procedure dialog box, and then click OK. For more information about the
options in the dialog box, press F1 while the dialog box is displayed. For
example, in the dialog box, type Test1 in the Name box, click Sub under
Type, click Public under Scope, and then click OK. The procedure that appears
in your module should look like the following example.

Public Sub Test1()

End Sub

After you've added a procedure to a module, you can add code to the
procedure. The following example adds to the preceding code a line that
displays a message box.

Public Sub Test1()
 MsgBox "This is the Test1 procedure running"
End Sub

If you want to write code that runs automatically when a certain event occurs —
for instance, when a document is opened, a worksheet is calculated, or a button
in a custom dialog box is clicked — you should write a procedure associated
with the event for the object or form. For general information about writing
event procedures, see "Writing Code to Respond to Events" later in this chapter.
For specific information about writing event procedures for custom dialog boxes
and ActiveX controls, see Chapter 12, "ActiveX Controls and Dialog Boxes."

What's the Difference Between a Macro and a Procedure?

Although the terms macro and procedure are sometimes used
interchangeably, they actually have distinct meanings. Procedure is the
broader term; it applies to any unit of code enclosed either between the
Sub and End Sub statements or between the Function and End
Function statements. Macro is a specific term that applies only to public
Sub procedures that take no arguments. All macros are procedures, but

Microsoft Office 97/Visual Basic Programmer's Guide Page 16 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Sub Procedures vs. Function Procedures

With Visual Basic, you can create two types of procedures: Sub procedures and
Function procedures.

A Sub procedure is a unit of code enclosed between the Sub and End Sub
statements that performs a task but doesn't return a value. The following
example is a Sub procedure.

Sub DisplayWelcome()
 MsgBox "Welcome"
End Sub

A Function procedure is a unit of code enclosed between the Function and
End Function statements. Like a Sub procedure, a Function procedure
performs a specific task. Unlike a Sub procedure, however, a Function
procedure also returns a value. The following example is a Function procedure.

Function AddThree(OriginalValue As Long)
 AddThree = OriginalValue + 3
End Function

Public Procedures vs. Private Procedures

You can call a public procedure, declared with the Public keyword, from any
procedure in any module in your application. You can call a private procedure,
declared with the Private keyword, only from other procedures in the same
module. Both Sub procedures and Function procedures can be either public or
private. The following are examples of private procedures.

Private Sub Test1()
 MsgBox "This is the Test1 procedure running"
End Sub

Private Function AddThree(OriginalValue As Long)
 AddThree = OriginalValue + 3
End Function

The following are examples of public procedures.

Public Sub Test1()
 MsgBox "This is the Test1 procedure running"
End Sub

Public Function AddThree(OriginalValue As Long)
 AddThree = OriginalValue + 3
End Function

not all procedures are macros. All procedures you generate with the
macro recorder and all procedures you can run from the Macros dialog
box in the Office application are macros.

Microsoft Office 97/Visual Basic Programmer's Guide Page 17 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

If you don't use either the Public or Private keyword to declare a procedure,
the procedure will be public by default. Therefore, the following are also
examples of public procedures.

Sub Test1()
 MsgBox "This is the Test1 procedure running"
End Sub

Function AddThree(OriginalValue As Long)
 AddThree = OriginalValue + 3
End Function

Although it's not necessary to use the Public keyword when creating a public
procedure, including it in procedure declarations makes it easier to see at a
glance which procedures are public and which are private. For more information,
see "Public" or "Private" in Help.

Using the Value Returned from a Function

For a function to return a value, it must include a function assignment
statement that assigns a value to the name of the function. In the following
example, the value assigned to ConeSurface will be the value returned by the
function.

Function ConeSurface(radius, height)
 Const Pi = 3.14159
 coneBase = Pi * radius ^ 2
 coneCirc = 2 * Pi * radius
 coneSide = Sqr(radius ^ 2 + height ^ 2) * coneCirc / 2
 ConeSurface = coneBase + coneSide
End Function

The information that must be supplied to a Sub procedure or Function
procedure for it to perform its task (radius and height in the preceding
example) is passed in the form of arguments. For more information about
arguments, see "Passing Arguments to a Procedure" later in this chapter.

When the Function procedure returns a value, this value can then become part
of a larger expression. For example, the following statement in another
procedure incorporates the return value of the ConeSurface and ScoopSurface
functions in its calculations.

totalSurface = ConeSurface(3, 11) + 2 * ScoopSurface(3)

Running a Sub Procedure

You can have a Sub procedure run in response to a specific event, you can run
it from the Visual Basic Editor or your application window, or you can call it from
another procedure.

Microsoft Office 97/Visual Basic Programmer's Guide Page 18 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

� If you want a Sub procedure to run automatically every time a specific
event occurs, you should add the code to the event procedure for the
event. For more information, see "Writing Code to Respond to Events"
later in this chapter.

� To run a Sub procedure from the Visual Basic Editor, position the insertion
point anywhere in the procedure, and then either press F1 or click the
Run Sub/UserForm button on the Standard or Debug toolbar.

� To run a Sub procedure that's a macro (see "What's the Difference
Between a Macro and a Procedure?" earlier in this chapter), select the
macro name in the Macros dialog box in the application, and then click
Run.

� To call a Sub procedure from another procedure, name it in your code,
just as you do with builtin keywords. The procedure in the following
example calls the DisplayWelcome procedure.

Sub TestCall()
 DisplayWelcome
End Sub

You cannot call a procedure you've declared as private from any procedure
outside the module in which the private procedure resides. However, you can
call a public procedure from outside the module in which it resides. For an
explanation of the terms "public" and "private" in this context, see "Sub
Procedures vs. Function Procedures" earlier in this chapter.

When you call a public procedure that isn't located in the current module, Visual
Basic searches other modules and runs the first public procedure it finds that
has the name you called. If the name of a public procedure isn't unique, you can
specify the module it's located in when you call the procedure. The following
example runs a Sub procedure named "DisplayWelcome" that's stored in a
module named "TestTools."

TestTools.DisplayWelcome

If necessary, you can also specify the project that the procedure resides in. The
following example runs a Sub procedure named "DisplayWelcome" that's stored
in a module named "TestTools" in a project named "TestDocument."

TestDocument.TestTools.DisplayWelcome

Note that the name of the project you specify is the project's code name, not
the name of the document the project is associated with. You can check and
modify the project's code name in the space to the right of (Name) in the
Properties window for the project. To see the Properties window, select the

Microsoft Office 97/Visual Basic Programmer's Guide Page 19 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

project in the Project Explorer, and then click Properties Window on the
View menu. You can also change the code name of a project by typing a new
name in the Project Name box on the General tab in the Project Properties
dialog box. You display this dialog box by rightclicking the project in the
Project Explorer, and then clicking Properties on the shortcut menu (the
command appears on the shortcut menu preceded by the current name of the
project). For more information about the options in the Project Properties
dialog box, click a tab and press F1.

Tip If you want to be able to call a procedure from other modules in the same
project but not from other projects, declare the procedure as public, but make
the module private to the project by adding the Option Private Module
statement to the (Declarations) section of the module.

If you want to be able to call procedures in one project from another project,
there must be a reference from the project containing the calling code to the
project containing the called code. To create a reference to a project, use the
References dialog box (Tools menu).

Note If you get an error when you try to create a reference from one project
to another one, make sure that the project you're trying to reference doesn't
have the same code name as the other project. (Multiple projects in an
application may be given the same default code name, such as "Project" in
Word or "VBAProject" in Microsoft Excel.) To check a project's code name, click
the project name in the Project Explorer, and then click and then click Properties
Window on the View menu. The text to the right of (Name) in the Properties
window is the project's code name. To change the code name for a project,
select the current code name and then type a new one. Keep in mind that you
cannot have circular references — that is, if you have a reference to project A
from project B, you cannot have a reference from project B to project A.

Passing Arguments to a Procedure

If your procedure needs information to perform its task that it cannot get from
the context in which it's being run, you can pass that information to the
procedure in the form of arguments. To indicate that a given procedure takes
arguments, include an argument list between the parentheses that follow the
procedure name in the procedure declaration. The argument list can contain
multiple argument declarations, separated by commas.

When you declare an argument, you can specify the data type of the argument
by using the As keyword (whether or not the procedure can change the
argument's value by using the ByVal and ByRef keywords), and you can
specify whether the argument is required or optional by using the Optional
keyword. For more information about a specific keyword, see the appropriate
topic in Help. For more information about the available data types in Visual
Basic, see "Visual Basic Data Types" later in this chapter.

The following example shows the declaration line of a Sub procedure that takes
three arguments.

Sub UpdateRecord(ByVal custId As Long, ByRef custName As String, _
 Optional custRepeat As Boolean)

Microsoft Office 97/Visual Basic Programmer's Guide Page 20 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

The first argument, custID, is a required argument that will be passed as a
value of type Long and will be passed by value. If you pass an argument by
value when calling a procedure, the called procedure receives only a copy of the
variable passed from the calling procedure. If the called procedure changes the
value, the change affects only the copy and not the variable in the calling
procedure.

The second argument, custName, is a required argument that will be passed as
a value of type String and will be passed by reference. If you pass an argument
by reference when calling a procedure, the procedure has access to the actual
variable in memory. As a result, the variable's value can be changed by the
procedure.

The third argument, custRepeat, is an optional argument that will be passed as
a value of type Boolean and will be passed by reference (passing by reference
is the default).

The following example calls UpdateRecord.

Dim newId As Long
Dim newName As String
Dim newRepeat As Boolean

newId = 3452
newName = "Mary Boyd"
newRepeat = True
UpdateRecord newId, newName, newRepeat

Note that the name of the variable you pass from the calling procedure doesn't
have to match the name of the argument declared in the called procedure.

Using Named Arguments

If either a procedure you create or a builtin function, statement, or method
takes more than one optional argument, you may want to pass arguments to it
by name rather than by position.

For example, the Open method of the Microsoft Excel Workbooks object,
which opens a workbook, takes 13 arguments. If you want to write code that
opens the workbook Book2.xls and adds it to the list of recently used files, you
could write the code shown in the following example.

Workbooks.Open "book2.xls", , , , , , , , , , , , True

However, this code is difficult to write correctly without introducing bugs,
because you have to count the number of commas to insert between the
arguments. The code is also very difficult to read, and it gives no clues about
what the arguments represent. The following example shows a better way to
write this code.

Workbooks.Open FileName:="book2.xls", AddToMru:=True

Microsoft Office 97/Visual Basic Programmer's Guide Page 21 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Because every argument has a name, you can use the name and the :=
operator to assign a value to an argument. When you use named arguments,
you don't have to remember the order of the arguments. For instance, the
preceding code could have been written with the order of the arguments
reversed, as in the following example.

Workbooks.Open AddToMru:=True, FileName:="book2.xls"

You can also use named arguments with the procedures you create. Visual Basic
automatically associates argument names with their corresponding procedures.
For instance, assume that you've created a FormatList procedure that takes two
required arguments and two optional arguments, as shown in the following
declaration.

Sub FormatList(startRow As Integer, startCol As Integer, _
Optional redText, Optional sortList)

The DoList procedure in the following example uses named arguments to call
the FormatList procedure.

Sub DoList()
FormatList redText:=True, startCol:=2, startRow:=2

End Sub

The arguments are now out of order, and one of the optional arguments was
omitted.

Note Using named arguments doesn't negate the need to enter required
arguments.

Writing Code to Respond to Events

Certain objects in the Office 97 applications recognize a predefined set of
events, which can be triggered either by the system or by the user. Examples of
events recognized by objects in Office include the Open and Close events for
Word documents; the Open, BeforePrint, BeforeSave, and BeforeClose events
for Microsoft Excel workbooks; the Calculate and SelectionChange events for
Microsoft Excel worksheets; the Click, Initialize, and Terminate events for
custom dialog boxes; and the Click, GotFocus, and LostFocus events for ActiveX
controls. For detailed information about the events available in Microsoft Excel
and Word, see Chapter 7, "Microsoft Word Objects," and Chapter 4, "Microsoft
Excel Objects." For detailed information about using custom dialog boxes and
ActiveX controls, see Chapter 12, "ActiveX Controls and Dialog Boxes."

You can control how your application responds to a recognized event by writing
code in the Code window for the object. Every time an event occurs, the code,
or event procedure, associated with that event runs. For instance, if you write a
procedure that's associated with the Open event for a Word document, every

Microsoft Office 97/Visual Basic Programmer's Guide Page 22 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

time that document is opened, the procedure automatically runs.

Where Event Code Is Stored

An event procedure is stored in the document, workbook, worksheet, slide, or
UserForm where the event can be triggered. For example, the procedure that
runs when you calculate the worksheet named "Last Quarter" in the workbook
named "Sales" would be stored in the Last Quarter worksheet in the project
associated with the Sales workbook. To view the code in a document, workbook,
worksheet, slide, or UserForm, click the object in the Project Explorer, and
then click the View Code button to open the Code window.

Note PowerPoint presentations and slides don't recognize events. Therefore,
unless you can place ActiveX controls (which recognize events) on a PowerPoint
slide, there can be no event procedures associated with the slide, and you won't
see the slide in the Project Explorer. For more information about adding ActiveX
controls to documents, see Chapter 12, "ActiveX Controls and Dialog Boxes."

How Event Procedures Are Named

The name of an event procedure is the name of the object that recognizes the
event — such as "Document," "Worksheet," "UserForm," or
"CommandButton1" — followed by an underscore (_), followed by the name of
the event that the procedure runs in response to — such as "Open," "Calculate,"
or "Click." For example, the procedure that runs when you open a Word
document is Document_Open.

Note Whereas the name of an event procedure for most objects is linked to
the class name (such as Document, Worksheet, or UserForm), the name of an
event procedure for an ActiveX control is linked to the control's code name —
either the default name or a name you assign. If you change the code name of a
control after writing event procedures, you must rename your procedures to
match; otherwise, they will never run in response to the events for that control.

To view an event procedure, open the Code window for the document,
workbook, worksheet, slide, or UserForm where the event can be triggered;
select the name of the object that recognizes the event (this can be either the
object where the event can be triggered itself or an ActiveX control contained in
the object) in the Object box; and then select the name of the specific event
you want to respond to in the Procedure box.

Note If you want a procedure to be associated with a specific document,
workbook, worksheet, slide, or custom dialog box, but not with a specific
event — for instance, if you want to be able to call the procedure from several
different event procedures — store it in the (General) section of the document,
workbook, worksheet, or slide module.

Timesaving Tools for Writing Code

Many keywords used in Visual Basic are extremely long and difficult to type
without making mistakes. To reduce the time you spend typing and the number
of typing errors in your code, Visual Basic includes tools that complete words
and build expressions for you.

Microsoft Office 97/Visual Basic Programmer's Guide Page 23 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

When you've typed enough letters for Visual Basic to recognize a word, press
CTRL+SPACE or click the Complete Word button on the Edit toolbar to have
Visual Basic automatically complete the word for you.

In the Options dialog box (Tools menu), you can turn on tools that
automatically do the following after you enter a line of code: verify correct
syntax, display information, and give you appropriate options to choose from at
each stage of building your expression.

You can also use the List Properties/Methods, List Constants, Quick Info,
Parameter Info, and Complete Word buttons on the Edit toolbar to get help
completing a word or an expression at any time. For more information about
using a specific tool to help you complete words and statements, see the Help
topic for that button or option. For information about using these tools to build
statements using Office properties and methods, see Chapter 2, "Understanding
Object Models."

Writing Code That's Easy to Read and Navigate

There are many ways to make your Visual Basic code more readable, as
described in the following paragraphs.

Add comments to your code by using an apostrophe ('). At run time, Visual
Basic ignores everything between the apostrophe and the end of the line. Each
line in the following example includes a comment.

'This procedure calculates the burdened cost
'of the specified employee
Dim baseSalary As Currency 'salary not including benefits or
baseSalary = employeeLevel * 2500 'employeeLevel passed as argument

To add the comment character to the beginning of each line in a selected block
of code, click the Comment Block button on the Edit toolbar. To remove the
comment character from the beginning of each line in a selected block of code,
click the Uncomment Block button.

Break a long statement into multiple lines in the Code window by using the line-
continuation character, which is a space followed by an underscore (_). The
following example shows the same statement expressed two different ways: on
a single line, and continued over two lines:

Set myField = ActiveDocument.Fields.Add(Range:=Selection.Range, Type:

Set myField = ActiveDocument.Fields.Add(Range:=Selection.Range, _
 Type:=wdFieldDate)

Note that you cannot use the linecontinuation character in the middle of a literal
string. If you have to break the line within a literal string, break the string with
the concatenation character (&), as shown in the following example.

MsgBox "This is a string that I have to break up " & _
 "so that I can continue it on another line"

Microsoft Office 97/Visual Basic Programmer's Guide Page 24 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

You cannot follow a linecontinuation character with a comment on the same
line.

Use indentation levels to show logical levels in your code. Press TAB or click the
Indent button on the Edit toolbar to shift each line in a selected block of code
one indentation level to the right. Lines within the selection retain their
indentation levels relative to one another. Press SHIFT+TAB or click the
Outdent button on the Edit toolbar to shift each line in a selected block of code
one indentation level to the right.

Use bookmarks to mark key areas in your code that you want to be able to
move between quickly without having to navigate manually. Add a bookmark to
a line by clicking the Toggle Bookmark button on the Edit toolbar. A blue,
rounded rectangle appears in the margin to indicate a bookmark. To navigate
between bookmarks, click the Next Bookmark or Previous Bookmark button
on the Edit toolbar.

For more information about a specific feature, see the appropriate topic in Help.

Document Projects vs. Template Projects

If you're writing procedures that are specifically designed to be run on a single
document, workbook, or presentation, you can store the code in the project
associated with that document, workbook, or presentation.

If, however, you want to be able to get to a procedure from more than one
document, workbook, or presentation, you can store the code in the project
associated with a particular template.

When you apply a template to a Word document, the template is attached to
the Word document. All procedures in the attached template are available to the
document. If you change the code in a template, the changed code is available
for use in all documents based on that template. If you want a procedure to be
available to all Word documents, regardless of which templates they're based
on, store the procedure in Normal.dot, which is automatically referenced by all
documents.

When you apply a template to a workbook or a presentation, any code in the
template project is copied to the project for the workbook or presentation.
Unlike Word, Microsoft Excel and PowerPoint don't attach the template to the
workbook, so changes you make to the code in the template project won't be
reflected in the workbook or presentation projects after the template has been
applied. If you want a procedure to be available to all Microsoft Excel
workbooks, regardless of which templates they're based on, store the procedure
in Personal.xls.

Class Modules

You use class modules to create your own custom objects when you want to
create encapsulated, reusable units of code. The Sub and Function procedures
you define in a class module become methods of the custom object. The
properties you define with the Property Get, Property Let, and Property Set

Microsoft Office 97/Visual Basic Programmer's Guide Page 25 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

statements become properties of the custom object. For more information about
creating and using custom classes, see Mastering Office 97 Development, a CD-
ROM product available from Microsoft.

If you've added class modules to your project, either by clicking Class Module
on the Insert menu or by copying modules from another project, you'll see a
Class Modules folder under the project name in the Project Explorer. You get
to the code for a particular class by clicking the class name and then clicking the
View Code button at the top of the Project Explorer.

Variables, Constants, and Data Types

In Visual Basic, as in all highlevel programming languages, you use variables
and constants to store values. Variables can contain data represented by any
supported data type.

Visual Basic Data Types

The following table lists the fundamental data types that Visual Basic supports.

Data type Description Range

Byte 1-byte binary data 0 to 255.

Integer 2-byte integer – 32,768 to 32,767.

Long 4-byte integer – 2,147,483,648 to
2,147,483,647.

Single 4-byte floating-point
number

 – 3.402823E38 to –
 1.401298E – 45 (negative
values).

1.401298E – 45 to
3.402823E38 (positive
values).

Double 8-byte floating-point
number

 – 1.79769313486231E308
to – 4.94065645841247E –
 324 (negative values).

4.94065645841247E – 324
to 1.79769313486231E308
(positive values).

Currency 8-byte number with a fixed
decimal point

 –
 922,337,203,685,477.5808
to
922,337,203,685,477.5807

String String of characters Zero to approximately two
billion characters.

Microsoft Office 97/Visual Basic Programmer's Guide Page 26 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Declaring a Constant, Variable, or Array

You declare a constant for use in place of a literal value by using the Const
statement. You can specify private or public scope, specify a data type, and
assign a value to the constant, as shown in the following declarations.

Const MyVar = 459
Public Const MyString = "HELP"
Private Const MyInt As Integer = 5
Const MyStr = "Hello", MyDouble As Double = 3.4567

If you don't specify scope, the constant has private scope by default. If you
don't explicitly specify a data type when you declare a constant, Visual Basic
gives the constant the data type that best matches the expression assigned to
the constant. For more information, see "Const Statement," "Public Statement,"
"Private Statement," and "As" in Help.

You declare a variable by using the Dim, Private, Public, or Static keyword.
Use the As keyword to explicitly specify a data type for the variable, as shown
in the following declarations.

Private I
Dim Amt
Static YourName As String
Public BillsPaid As Currency
Private YourName As String, BillsPaid As Currency
Private Test, Amount, J As Integer

If you don't declare a variable as static, when a procedure that contains it ends,
the variable's value isn't preserved and the memory that the variable used is
reclaimed. If you don't explicitly declare a data type, Visual Basic gives the
variable the Variant data type by default.

Note Not all variables in the same declaration statement have the same
specified type. For example, the variables Test and Amount in the last line in

Variant Date/time, floating-point
number, integer, string, or
object. 16 bytes, plus 1
byte for each character if
the value is a string value.

Date values: January 1,
100 to December 31, 9999.

Numeric values: same
range as Double.

String values: same range
as String.

Can also contain Error or
Null values.

Boolean 2 bytes True or False.

Date 8-byte date/time value January 1, 100 to
December 31, 9999.

Object 4 bytes Any object reference.

Microsoft Office 97/Visual Basic Programmer's Guide Page 27 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

the preceding example are of the Variant data type.

The steps you take to declare an array are very similar to the steps you take to
declare a variable. You use the Private, Public, Dim, and Static keywords to
declare the array, you use integer values to specify the upper and lower bounds
for each dimension, and you use the As keyword to specify the data type for the
array elements. You must explicitly declare an array before you can use it; you
cannot implicitly declare an array.

When you declare an array, you specify the upper and lower bounds for each
dimension within the parentheses following the array name. If you specify only
one value for a dimension, Visual Basic interprets the value as the upper bound
and supplies a default lower bound. The default lower bound is 0 (zero) unless
you set it to 1 by using the Option Base statement. The following declarations
declare onedimensional arrays containing 15 and 21 elements, respectively.

Dim counters(14) As Integer
Dim sums(20) As Double

You can also specify the lower bound of a dimension explicitly. To do this,
separate the lower and upper bounds with the To keyword, as in the following
declarations.

Dim counters(1 To 15) As Integer
Dim sums(100 To 120) As String

In the preceding declarations, the index numbers of counters range from 1 to
15, and the index numbers of sums range from 100 to 120.

Tip You can use the LBound and UBound functions to determine the existing
lower and upper bounds of an array.

You can declare arrays of up to 60 dimensions. The following declaration creates
an array with three dimensions, whose sizes are 4, 10, and 15. The total
number of elements is the product of these three dimensions, or 600.

Dim multiD(4, 1 To 10, 1 To 15)

Tip When you start adding dimensions to an array, the total amount of storage
needed by the array increases dramatically, so use multidimensional arrays with
care. Be especially careful with Variant arrays, because they're larger than
arrays of other data types.

You declare a dynamic array just as you would declare a fixedsize array, but
without specifying dimension sizes within the parentheses following the array
name, as in the following declaration.

Dim dynArray() As Integer

Microsoft Office 97/Visual Basic Programmer's Guide Page 28 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Somewhere in a procedure, allocate the actual number of elements with a
ReDim statement, as in the following example.

ReDim DynArray(X + 1)

Use the Preserve keyword to change the size of an array without losing the
data in it. You can enlarge an array by one element without losing the values of
the existing elements, as in the following example.

ReDim Preserve myArray(UBound(myArray) + 1)

For more information, see "ReDim Statement" in Help.

Setting an Object Variable

You declare an object variable by specifying for the data type either the generic
Object type or a specific class name from a referenced object library. The
following declaration declares an object variable of the generic type Object.

Dim mySheet As Object

When an object variable is declared as the generic type Object, Visual Basic
doesn't know what type of object the variable will later be used with. Therefore,
Visual Basic cannot verify at compile time that the object exists, cannot verify
that any properties or methods used with the object are specified correctly, and
cannot bind this information to the object variable — in other words, Visual
Basic cannot early bind the object variable. Not until the code runs and actually
assigns an object to the object variable can Visual Basic verify this information
and late bind the object variable. Generic object variables are useful when you
don't know the specific type of object that the variable will contain, or when the
variable must at different times contain objects from several different classes. If
possible, however, you should provide a specific class name when declaring an
object variable, as shown in the following declarations.

Dim mySheet As Worksheet
Dim myPres As Presentation
Dim myRange As Range
Dim myApp As Application

In addition to providing a specific class name, you may want to qualify the
object variable type with the name of the application that's supplying the
object, as in the following declarations. This is useful if you write code using the
objects from more than one library, especially if the different libraries contain
objects with the same name.

Dim wndXL As Excel.Window
Dim wndWD As Word.Window
Dim appWD As Word.Application

Microsoft Office 97/Visual Basic Programmer's Guide Page 29 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

To assign an object to an object variable, use the Set statement, as shown in
the following example.

Dim myRange As Excel.Range
Set myRange = Worksheets("Sheet1").Range("A1")

If you don't explicitly declare an object variable and you forget the Set
statement in your assignment, Visual Basic attempts to use the default property
of the object to assign a value to the variable. The following example assigns to
the variable myRange the value of the default property of the Range object
(which is the Value property) rather than the Range object itself.

myRange = Worksheets("Sheet1").Range("A1") ' forgot the Set stat

Using Builtin Constants

The object library in each Office 97 application provides a set of builtin
constants, which you can use to set properties or pass arguments to properties
or methods. An enumerated type is a set of builtin constants that represent the
possible values that a specific property can be set to or that a specific property
or method can accept as an argument. In the Object Browser, many properties
or methods will display the name of an enumerated type for a return type or an
argument type instead of displaying a basic data type. To open the Object
Browser in the Visual Basic Editor, press F2. You can use the Object Browser to
see which constants are included in an enumerated type and what literal value
each constant represents. For example, click Application in the Classes box in
the Object Browser, and click DisplayAlerts in the Members of box. In the
pane at the bottom of the Object Browser, you see the following phrase:

Property DisplayAlerts As WdAlertLevel

WdAlertLevel is an enumerated type that contains a set of constants that
represent all the valid values for the DisplayAlerts property. You can recognize
an enumerated type name because it begins with a prefix that indicates the
object library that supplied it — such as Mso, Wd, Xl, Ac, Pp, VB, or Fm —
just as builtin constant names do. To see the constants included in this
enumerated type, click WdAlertLevel. Builtin constant names begin with the
same prefixes as enumerated types. The Classes box in the Object Browser will
scroll to the WdAlertLevel enumerated type, and you'll see the constants of
this type listed in the Members of box. If you click one of the constants, you'll
see the literal value that it represents in the pane at the bottom of the Object
Browser. For more information about using the Object Browser, see Chapter 2,
"Understanding Object Models."

You use builtin constants to replace literal values in your code. The two lines of
code in the following example, each of which sets Word to display all alerts and
message boxes when it's running a procedure, are equivalent to one another.

Application.DisplayAlerts = -1
Application.DisplayAlerts = wdAlertsAll

Microsoft Office 97/Visual Basic Programmer's Guide Page 30 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Code that uses these constants instead of literal values is easier to read. In
addition, code that uses builtin constants is less likely to need to be updated if
values are remapped in future versions. That is, whereas the literal value – 1
might not always represent the option of displaying all alerts and message
boxes, the constant wdAlertsAll always will.

Control Structures

Using control structures, you can control the flow of your program's execution.
If left unchecked by controlflow statements, a program's logic will flow through
statements from left to right, and from top to bottom. Although you can write
very simple programs with only this unidirectional flow, and although you can
control a certain amount of flow by using operators to regulate precedence of
operations, most of the power and utility of any programming language comes
from its ability to change statement order with structures and loops.

Decision Structures

Visual Basic procedures can test conditions and then, depending on the results
of that test, perform different operations. The Visual Basic decision structures
are listed in the following table.

If...Then

Use the If...Then statement to run one or more statements when the specified
condition is True. You can use either a singleline syntax or a multipleline
"block" syntax. The following pair of examples illustrate the two types of syntax.

If thisVal < 0 Then thisVal = 0

If thisVal > 5 Then
thatVal = thisVal + 25
thisVal = 0

End If

Notice that the singleline form of the If...Then statement doesn't use an End If
statement. If you want to run more than one line of code when the condition is

To test Use

A single condition and run a
single statement or a block of
statements

If...Then

A single condition and choose
between two statement blocks

If...Then...Else

More than one condition and run
one of several statement blocks

If...Then...ElseIf

A single condition and run one
of several statement blocks

Select Case

Microsoft Office 97/Visual Basic Programmer's Guide Page 31 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

True, you must use the multipleline If...Then...End If syntax.

Note When the condition you're evaluating contains two expressions joined by
an Or operator — for example, If (thisVal > 5 Or thatVal < 9) — both
expressions are tested, even if the first one is True. In rare circumstances, this
behavior can affect the outcome of the statement; for example, it can cause a
runtime error if a variable in the second expression contains an error value.

If...Then...Else

Use the If...Then...Else statement to define two blocks of statements, as in the
following example. One of the statements runs when the specified condition is
True, and the other one runs when the condition is False.

If age < 16 Then
MsgBox "You are not old enough for a license."

Else
MsgBox "You can be tested for a license."

End If

If...Then...ElseIf

You can add ElseIf statements to test additional conditions without using
nested If...Then statements, thus making your code shorter and easier to read.
For example, suppose that you need to calculate employee bonuses using bonus
rates that vary according to job classification. The Function procedure in the
following example uses a series of ElseIf statements to test the job
classification before calculating the bonus.

Function Bonus(jobClass, salary, rating)
If jobClass = 1 Then

Bonus = salary * 0.1 * rating / 10
ElseIf jobClass = 2 Then

Bonus = salary * 0.09 * rating / 10
ElseIf jobClass = 3 Then

Bonus = salary * 0.07 * rating / 10
Else

Bonus = 0
End If

End Function

The If...Then...ElseIf statement block is very flexible. You can start with a
simple If...Then statement and add Else and ElseIf clauses as necessary.
However, this approach is unnecessarily tedious if each ElseIf statement
compares the same expression with a different value. For this situation, you can
use the Select Case statement.

Select Case

You can use the Select Case statement instead of multiple ElseIf statements
in an If...Then...ElseIf structure when you want to compare the same
expression with several different values. A Select Case statement provides a
decisionmaking capability similar to the If...Then...ElseIf statement; however,
Select Case makes the code more efficient and readable.

Microsoft Office 97/Visual Basic Programmer's Guide Page 32 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

For instance, to add several more job classifications to the example in the
preceding section, you can add more ElseIf statements, or you can write the
function using a Select Case statement, as in the following example.

Function Bonus(jobClass, salary, rating)
Select Case jobClass

Case 1
Bonus = salary * 0.1 * rating / 10

Case 2
Bonus = salary * 0.09 * rating / 10

Case 3
Bonus = salary * 0.07 * rating / 10

Case 4, 5 'The expression list can contain seve
Bonus = salary * 0.05 * rating / 5

Case 6 To 8 '...or be a range of values
Bonus = 150

Case Is > 8 '...or be compared to other values
Bonus = 100

Case Else
Bonus = 0

End Select
End Function

Notice that the Select Case structure evaluates a single expression at the top
of the structure. In contrast, the If...Then...ElseIf structure can evaluate a
different expression for each ElseIf statement. You can replace an
If...Then...ElseIf structure with a Select Case structure only if each ElseIf
statement evaluates the same expression.

Looping Structures

You can use loop structures to repeatedly run a section of your procedure. The
Visual Basic loop structures are listed in the following table.

To Use

Test a condition at the start of
the loop, run the loop only if the
condition is True, and continue
until the condition becomes
False

Do While...Loop

Test a condition at the start of
the loop, run the loop only if the
condition is False, and continue
until the condition becomes
True

Do Until...Loop

Always run the loop once, test a
condition at the end of the loop,
continue while the condition is
True, and stop when the
condition becomes False

Do...Loop While

Microsoft Office 97/Visual Basic Programmer's Guide Page 33 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Note Visual Basic also includes the While…Wend statement, but it's a good
idea to use the more flexible variations of the Do…Loop statement (such as Do
While…Loop or Do…Loop While) instead.

Do...Loop

Use a Do...Loop statement to run a block of statements an indefinite number of
times — that is, when you don't know how many times you need to run the
statements in the loop. There are several variations of the Do...Loop
statement, but each one evaluates a condition to determine whether or not to
continue running. As with an If...Then statement, the condition must be a
value or an expression that evaluates to either True or False. The different
Do…Loop variations are described in this section. For more information about
the Do...Loop statement, see "Do...Loop Statement" in Help.

Note If you want to run a block of statements a specific number of times, use
a For…Next loop.

Do While...Loop

Use the Do While...Loop statement when you want to test a condition before
you run the loop and then continue to run the loop while the condition is True.

Note The statements in a Do While…Loop structure must eventually cause the
condition to become False, or the loop will run forever (this is called an infinite
loop). To stop an infinite loop, press CTRL+BREAK.

The Function procedure in the following example counts the occurrences of a
target string within another string by looping as long as the target string is
found. Because the test is at the beginning of the loop, the loop runs only if the
string contains the target string.

Function CountStrings(longstring, target)
position = 1
Do While InStr(position, longstring, target) 'Returns True/Fa

position = InStr(position, longstring, target) + 1
Count = Count + 1

Loop
CountStrings = Count

Always run the loop once, test a
condition at the end of the loop,
continue while the condition is
False, and stop when the
condition becomes True

Do...Loop Until

Run a loop a set number of
times, using a loop counter that
starts and ends at specified
values and that changes value
by a specified amount each time
through the loop

For...Next

Run a loop once for each object
in a collection

For Each...Next

Microsoft Office 97/Visual Basic Programmer's Guide Page 34 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

End Function

Do Until...Loop

Use the Do Until…Loop statement if you want to test the condition at the
beginning of the loop and then run the loop until the test condition becomes
True. If the condition is initially True, the statements inside the loop never run.
With the test at the beginning of the loop in the following example, the loop
won't run if Response is equal to vbNo.

Response = MsgBox("Do you want to process more data?", vbYesNo)
Do Until Response = vbNo

ProcessUserData 'Call procedure to process data
Response = MsgBox("Do you want to process more data?", vbYesN

Loop

Do...Loop While

When you want to make sure that the statements in a loop will run at least
once, use Do…Loop While to put the test at the end of the loop . The
statements will run as long as the condition is True. In the following Microsoft
Excel example, the loop runs only if the Find method finds a cell that contains
"test." If the text is found, the loop sets the color of the cell, and then searches
for the next instance of "test." If no other instance is found, the loop ends.

Sub MakeBlue()
Set rSearch = Worksheets("sheet1").Range("a1:a10")
Set c = rSearch.Find("test")
If Not c Is Nothing Then

first = c.Address
Do

c.Font.ColorIndex = 5
Set c = rSearch.FindNext(c)

Loop While (Not c Is Nothing) And (c.Address <> first
Else

MsgBox "not found"
End If

End Sub

Do...Loop Until

With the Do…Loop Until statement, which puts the test at the end of the loop,
the loop runs at least once and stops running when the condition becomes
True, as shown in the following example.

Do
ProcessUserData 'Call procedure to process data
response = MsgBox("Do you want to process more data?", vbYesN

Loop Until response = vbNo

For...Next

When you know that you must run the statements a specific number of times,

Microsoft Office 97/Visual Basic Programmer's Guide Page 35 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

use a For...Next loop. Unlike the many variations of Do…Loop, a For...Next
loop uses a counter variable that increases or decreases in value during each
repetition of the loop. Whereas the variations of Do…Loop end when a test
condition becomes True or False, a For...Next loop ends when the counter
variable reaches a specified value.

The Sub procedure in the following example sounds a tone however many times
you specify.

Sub BeepSeveral()
numBeeps = InputBox("How many beeps?")
For counter = 1 To numBeeps

Beep
Next counter

End Sub

Because you didn't specify otherwise, the counter variable in the preceding
example increases by 1 each time the loop repeats. You can use the Step
keyword to specify a different increment for the counter variable (if you specify
a negative number, the counter variable decreases by the specified value each
time through the loop). In the following Sub procedure, which replaces every
other value in an array with 0 (zero), the counter variable increases by 2 each
time the loop repeats.

Sub ClearArray(ByRef ArrayToClear())
For i = LBound(ArrayToClear) To UBound(ArrayToClear) Step 2

ArrayToClear(i) = 0
Next i

End Sub

Note The variable name after the Next statement is optional, but it can make
your code easier to read, especially if you have several nested For loops.

For Each...Next

A For Each...Next loop is similar to a For...Next loop, except that it repeats a
group of statements for each element in a collection of objects or in an array,
instead of repeating the statements a specified number of times. This is
especially useful if you don't know how many elements are in a collection, or if
the contents of the collection might change as your procedure runs. The For
Each…Next statement uses the following syntax.

For Each element In group
statements

Next element

When Visual Basic runs a For Each...Next loop, it follows these steps:

1. It defines element as naming the first element in group (provided that
there's at least one element).

2. It runs statements.

Microsoft Office 97/Visual Basic Programmer's Guide Page 36 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

3. It tests to see whether element is the last element in group. If so, Visual
Basic exits the loop.

4. It defines element as naming the next element in group.

5. It repeats steps 2 through 4.

The following Microsoft Excel example examines each cell in the current region
for cell A1 on the worksheet named "Sheet3" and formats its contents as red if
its value is less than – 1.

For Each c In Worksheets("sheet3").Range("a1").CurrentRegion.Cells
If c.Value < -1 Then c.Font.ColorIndex = 3

Next c

The following Word example loops through all the revisions in the current
selection and accepts each one.

For Each myRev In Selection.Range.Revisions
 myRev.Accept
Next myRev

The variable name after the Next statement — c in the Microsoft Excel example
and myRev in the Word example — is optional, but it can make your code easier
to read, especially if you have several nested For Each loops.

Important If you want to delete all the objects in a collection, use a
For...Next loop instead of a For Each...Next loop. The following example
deletes all the slides in the active PowerPoint presentation.

Set allSlides = ActivePresentation.Slides
For s = allSlides.Count To 1 Step -1
 allSlides.Item(s).Delete
Next

The code in the following example, on the other hand, won't work (it will delete
every other slide in the presentation).

For Each s In ActivePresentation.Slides
 s.Delete
Next

Keep the following restrictions in mind when using the For Each...Next
statement:

� For collections, element can only be a Variant variable, a generic Object
variable, or a specific object type in a referenced object library. For
arrays, element can only be a Variant variable.

� You cannot use the For Each...Next statement with an array of user-

Microsoft Office 97/Visual Basic Programmer's Guide Page 37 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

defined types, because a Variant variable cannot contain a userdefined
type.

Nesting Control Structures

You can place control structures inside other control structures; for instance,
you can place an If...Then block within a For Each...Next loop within another
If...Then block, and so on. A control structure placed inside another control
structure is said to be nested.

The following example searches the range of cells you specify with an argument
and counts the number of cells that match the value you specify.

Function CountValues(rangeToSearch, searchValue)
If TypeName(rangeToSearch) <> "Range" Then

MsgBox "You can search only a range of cells."
Else

For Each c in rangeToSearch.cells
If c.Value = searchValue Then

counter = counter + 1
End If

Next c
End If
CountValues = counter

End Function

Notice that the first End If statement closes the inner If...Then block and that
the last End If statement closes the outer If...Then block. Likewise, in nested
For...Next and For Each...Next loops, the Next statements automatically
apply to the nearest prior For or For Each statement. Nested Do...Loop
structures work in a similar fashion, with the innermost Loop statement
matching the innermost Do statement.

Exiting Loops and Procedures

Usually, your macros will run through loops and procedures from beginning to
end. There may be situations, however, in which leaving, or exiting, a loop or
procedure earlier than normal can save you time by avoiding unnecessary
repetition.

For example, if you're searching for a value in an array using a For...Next loop
and you find the value the first time through the loop, there's no reason to
search the rest of the array — you can stop repeating the loop and continue
with the rest of the procedure immediately. If an error occurs in a procedure
that makes the remainder of the procedure unnecessary, you can exit the
procedure immediately. You can cut a control structure off early by using one of
the Exit statements.

Although the Exit statements can be convenient, you should use them only
when it's absolutely necessary and only as a response to an extraordinary
condition (not in the normal flow of a loop or procedure). Overusing Exit
statements can make your code difficult to read and debug.

Also , there may be a better way to skip portions of your macro. For instance,

Microsoft Office 97/Visual Basic Programmer's Guide Page 38 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

instead of using an Exit statement inside a For...Next loop while searching for
a value in an array, you could use a Do…Loop to search the array only while an
incremented index value is smaller than the array's upper bound and a Boolean
variable value is False, as shown in the following example. When you find the
array value, setting the Boolean value to True causes the loop to stop.

i = LBound(searchArray)
ub = UBound(searchArray)
foundIt = False
Do

If searchArray(i) = findThis Then foundIt = True
i = i + 1

Loop While i <= ub And Not foundIt

You use the Exit Do statement to exit directly from a Do…Loop, and you use
the Exit For statement to exit directly from a For loop, as shown in the
following example.

For Each c in rangeToSearch
If c.Value = searchValue Then

found = True
Exit For

End If
Next

You use the Exit Sub and Exit Function statements to exit a procedure. The
following example demonstrates the use of Exit Function.

For Each c in rangeToSearch
If c.Value = searchValue Then

counter = counter + 1
ElseIf c.Value = "Bad Data" Then

countValues = Null
Exit Function 'Stop testing and exit immediately.

End If
Next c

Contents
� Overview of Object Models
� Automating a Task by Using Objects
� Programming Another Application's Objects

Objects are the fundamental building blocks of the Microsoft Office 97
applications; nearly everything you do in Visual Basic involves manipulating

C H A P T E R 2 Microsoft Office 97/Visual Basic Programmer's Guide

Understanding Object Models

Microsoft Office 97/Visual Basic Programmer's Guide Page 39 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

objects. Every unit of content and functionality in Office — each workbook,
worksheet, document, range of text, slide, and so on — is an object that you
can control programmatically in Visual Basic. When you understand how to work
with objects, you're ready to automate tasks in Office.

This chapter gives you a conceptual overview of objects and object models and
the tools and techniques you use to explore and use them. For more information
about using the object model for a particular application, see the chapter in this
book that's devoted to working with that object model.

Overview of Object Models

Before you can programmatically gain access to an application's content and
functionality, it's important to understand how the content and functionality of
the application is partitioned into discrete objects and how these objects are
arranged in a hierarchical model.

What Are Objects and Object Models?

An application consists of two things: content and functionality. Content refers
to the documents the application contains and the words, numbers, or graphics
included in the documents; it also refers to information about attributes of
individual elements in the application, such as the size of a window, the color of
a graphic, or the font size of a word. Functionality refers to all the ways you can
work with the content in the application — for example, opening, closing,
adding, deleting, copying, pasting, editing, or formatting elements in the
application.

The content and functionality in an application are broken down into discrete
units of related content and functionality called objects. You're already familiar
with some of these objects, as elements of the user interface: Microsoft Excel
workbooks, work-sheets, and cell ranges; Word documents and sections; and
PowerPoint presentations and slides.

The toplevel object in an application is usually the Application object, which is
the application itself. For instance, Microsoft Excel itself is the Application
object in the Microsoft Excel object model. The Application object contains
other objects that you have access to only when the Application object exists
(that is, when the application is running). For example, the Microsoft Excel
Application object contains Workbook objects, and the Word Application
object contains Document objects. Because the Document object depends on
the existence of the Word Application object for its own existence, the
Document object is said to be the child of the Application object; conversely,
the Application object is said to be the parent of the Document object.

Many objects that are children have children of their own. For example, the
Microsoft Excel Workbook object contains, or is parent to, the collection of
Worksheet objects that represent all the worksheets in the workbook. A parent
object can have multiple children; for instance, the Word Window object has as
children the Panes, Selection, and View objects. Likewise, a child object can
have multiple parents; for instance, the Word Windows collection object is the
child of both the Application object and the Document object.

The way the objects that make up an application are arranged relative to each

Microsoft Office 97/Visual Basic Programmer's Guide Page 40 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

other, together with the way the content and functionality are divided among
the objects, is called the object hierarchy or the object model. To see a
graphical representation of the object model for a particular application, see
"Microsoft Access Objects," "Microsoft Excel Objects," "Microsoft Word Objects,"
or "Microsoft PowerPoint Objects" in Visual Basic Help for that application. For
information about using Help and the Object Browser to explore an object
model, see "Getting Help Writing Code" later in this chapter.

Note If you clicked Typical when you installed Microsoft Office, you'll need to
run Setup again to install Visual Basic Help for the application you want to
program in.

In addition to containing lowerlevel objects, each object in the hierarchy
contains content and functionality that apply both to the object itself and to all
objects below it in the hierarchy. The higher an object is in the hierarchy, the
wider the scope of its content and functionality. For example, in Microsoft Excel,
the Application object contains the size of the application window and the
ability to quit the application; the Workbook object contains the file name and
format of the workbook and the ability to save the workbook; and the
Worksheet object contains the worksheet name and the ability to delete the
worksheet.

You often don't get to what you think of as the contents of a file (such as the
values on a Microsoft Excel worksheet or the text in a Word document) until
you've navigated through quite a few levels in the object hierarchy, because this
specific information belongs to a very specific part of the application. In other
words, the value in a cell on a worksheet applies only to that cell, not to all cells
on the worksheet, so you cannot store it directly in the Worksheet object. The
content and functionality stored in an object are thus intrinsically appropriate to
the scope of the object.

In summary, the content and functionality in an application are divided among
the objects in the application's object model. Together, the objects in the
hierarchy contain all the content and functionality in the application. Separately,
the objects provide access to very specific areas of content and functionality.

What Are Properties and Methods?

To get to the content and functionality contained in an object, you use
properties and methods of that object. The following Microsoft Excel example
uses the Value property of the Range object to set the contents of cell B3 on
the worksheet named "Sales" in the workbook named "Current.xls."

Workbooks("Current.xls").Worksheets("Sales").Range("B3").Value = 3

The following example uses the Bold property of the Font object to apply bold
formatting to cell B3 on the Sales worksheet.

Workbooks("Current.xls").Worksheets("Sales").Range("B3").Font.Bold =

The following Word example uses the Close method of the Document object to
close the file named "Draft 3.doc."

Microsoft Office 97/Visual Basic Programmer's Guide Page 41 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Documents("Draft 3.doc").Close

In general, you use properties to get to content, which can include the text
contained in an object or the attribute settings for the object; and you use
methods to get to functionality, which entails everything you can do to the
content. Be aware, however, that this distinction doesn't always hold true; there
are a number of properties and methods in every object model that constitute
exceptions to this rule.

How Is the Object Model Related to the User
Interface?

There are two ways to interact with an application's objects: manually (using
the user interface) or programmatically (using a programming language). In the
user interface, you use the keyboard or the mouse, or both, to navigate to the
part of the application that controls the data you want to change or the
commands you want to use. For example, in Microsoft Excel, to enter a value
into cell B3 on the worksheet named "Sales" in the workbook named
"Current.xls," you open the Current.xls workbook, you click the tab for the Sales
worksheet, you click in cell B3, and then you type a value.

In Visual Basic statements, you navigate through the object model from the
toplevel object to the object that contains the content and functionality you
want to work with, and you use properties and methods of that object to get to
the content and functionality. For example, the following Microsoft Excel
example navigates to cell B3 on the Sales worksheet in the Current.xls
workbook and sets the contents of the cell.

Workbooks("Current.xls").Worksheets("Sales").Range("B3").Value = 3

Because the user interface and Visual Basic are two ways of gaining access to
the exact same content and functionality, many objects, properties, and
methods share names with elements in the user interface, and the overall
structure of the object model resembles the structure of the user interface. This
also means that for every action you can take in the user interface, there's a
Visual Basic code equivalent. For information about using the macro recorder to
translate user interface actions into their Visual Basic code equivalents, see
"Using the Macro Recorder" later in this chapter.

Why Does It Matter Where an Object Is in the Object
Model?

It's important to understand an object's place in the object model, because
before you can work with an object, you have to navigate through the object
model to get to it. This usually means that you have to step down through all
the objects above it in the object hierarchy to get to it. For example, in
Microsoft Excel, you cannot get to a particular cell on a worksheet without first
going through the application , which contains the workbook that contains the
worksheet that contains the cell. The following example inserts the value 3 in
cell B3 on the worksheet named "Second Quarter" in the workbook named
"Annual Sales.xls."

Microsoft Office 97/Visual Basic Programmer's Guide Page 42 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Application.Workbooks("Annual Sales.xls").WorkSheets("Second Quarter"

Similarly, the following Word example applies bold formatting to the second
word in the third paragraph in the first open document.

Application.Documents(1).Paragraphs(3).Range.Words(2).Bold = True

What Are Collection Objects?

When using Visual Basic Help graphics to explore the object model for the
application in which you want to program, you may notice that there are many
boxes in the graphics that contain two words — usually the singular and plural
forms of the same object name, such as "Documents (Document)" or
"Workbooks (Workbook)." In these cases, the first name (usually the plural
form) is the name of a collection object. A collection object is an object that
contains a set of related objects. You can work with the objects in a collection as
a single group rather than as separate entities. The second name (usually the
singular form), enclosed in parentheses, is the name of an individual object in
the collection. For example, in Word, you can use the Documents collection to
work with all the Document objects as a group.

Although the Documents collection object and the Document object are both
objects in their own right, each with its own properties and methods, they're
grouped as one unit in most object model graphics to reduce complexity. You
can use a collection object to get to an individual object in that collection,
usually with the Item method or property. The following PowerPoint example
uses the Item property of the Presentations collection object to activate the
presentation named "Trade Show" and then close it. All other open
presentations are left open.

Presentations.Item("Trade Show").Close

Note The Item property or method is the default method for most collections.
Therefore, Presentations("Trade Show").Close is equivalent to the preceding
example.

You can also create new objects and add them to a collection, usually by using
the Add method of that collection. The following Word example creates a new
document based on the Normal template.

Documents.Add

You can find out how many objects there are in the collection by using the
Count property. The following Microsoft Excel example displays the number of
open workbooks in a message box if more than three workbooks are open.

If Workbooks.Count > 3 Then MsgBox "More than 3 workbooks are open"

Collections are useful in other ways as well. For instance, you can perform an

Microsoft Office 97/Visual Basic Programmer's Guide Page 43 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

operation on all the objects in a given collection, or you can set or test a value
for all the objects in the collection. To do this, you use a For Each…Next or
For…Next structure to loop through all the objects in the collection. For more
information about looping through a collection, see Chapter 1, "Programming
Basics."

Automating a Task by Using Objects

To automate a task in Microsoft Office, you first return a reference to the object
that contains the content and functionality you want to get to, and then you
apply properties and methods to that object. If you don't know which properties
and methods you need to apply to what object to accomplish the task, or how to
navigate through the object model to get to that object, see "Getting Help
Writing Code" later in this chapter.

Returning a Reference to an Object

Before you can do anything with an object, you must return a reference to the
object. To do this, you must build an expression that gains access to one object
in the object model and then uses properties or methods to move up or down
through the object hierarchy until you get to the object you want to work with.
The properties and methods you use to return the object you start from and to
move from one object to another are called object accessors, or just accessors.
As you build an expression with accessors to return a reference to an object,
keep the following guidelines in mind.

� A common place to gain access to the object model is the toplevel object,
which is usually the Application object. Use the Application property to
return a reference to the Application object. The following expression
returns a reference to the Application object (for any object library that
contains an Application object).

Application

� To drill down to an object from the toplevel object in a hierarchy, you
must step down through all the objects above it in the hierarchy, using
accessors to return one object from another. For example, the
Documents property of the Word Application object returns the
Documents collection object, which represents all open documents. The
following expression returns a reference to the Word Documents
collection object.

Application.Documents

� There are shortcut accessors you can use to gain direct access to objects
in the model without having to drill down from the Application object.
These shortcuts include accessors — such as the Documents,
Workbooks, and Presentations properties — that you can use by
themselves to return a reference to the document collection for a
particular application. For example, in Word, you can use either of the

Microsoft Office 97/Visual Basic Programmer's Guide Page 44 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

following statements to open MyDoc.doc

Application.Documents.Open FileName:="C:\DOCS\MYDOC.DOC"
Documents.Open FileName:="C:\DOCS\MYDOC.DOC"

There are other shortcut accessors — such as the ActiveWindow,
ActiveDocument, ActiveWorksheet, or ActiveCell properties — that return
a direct reference to an active part of an application. The following
statement closes the active Word document. Notice that the Application
object and the Documents collection object are never mentioned.

ActiveDocument.Close

Tip You can use any accessor that appears in the Members of pane of
the Object Browser when <globals> is selected in the Classes pane as a
shortcut; that is, you don't have to return the object that the property or
method applies to before you use the property or method, because Visual
Basic can determine from the context in which your code runs which
object a global property or method applies to. For more information about
the Object Browser, see "Getting Help Writing Code" later in this chapter.

Workbooks

� To return a single member of a collection, you usually use the Item
property or method with the name or index number of the member. For
example, in Microsoft Excel, the following expression returns a reference
to an open workbook named "Sales."

Workbooks.Item("Sales")

The Item property or method is the default method for most collections.
Therefore, the following two expressions are equivalent.

Workbooks.Item("Sales")
Workbooks.("Sales")

� To navigate from an object higher up in the object hierarchy, you can
often use the Parent property of the object. Note that the Parent
property doesn't always return the immediate parent of an object — it
may return the object's "grandparent," especially if the object is a
member of a collection. That is, the Parent property of an object in a
collection may return the collection's parent instead of the collection itself.
For example, the Parent property of a Word Document object returns
the Application object, not the Documents collection. Use the
TypeName function to find out what kind of object the Parent property
of an object returns a reference to. For example, in Microsoft Excel, the
following statement displays the type of object that the Parent property
of the Worksheet object refers to.

Microsoft Office 97/Visual Basic Programmer's Guide Page 45 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

MsgBox TypeName(Workbooks(1).Worksheets(1).Parent)

Tip You can use the TypeName function to determine the type of object
returned by any expression, not just expressions containing the Parent
property.

ActivePresentation.Slides(1).Shapes(3).Object.Application

Applying Properties and Methods to an Object

After you've returned a reference to the object you want to work with it, you
can apply properties and methods to the object to set an attribute for it or
perform an action on it. You use the "dot" operator (.) to separate the
expression that returns a reference to an object from the property or method
you apply to the object. The following example, which can be run from Microsoft
Excel, Word, or PowerPoint, sets the left position of the active window by using
the Left property of the Window object that the ActiveWindow property
returns a reference to.

ActiveWindow.Left = 200

The following Word example closes the active document by using the Close
method of the Document object that the ActiveDocument property returns a
reference to.

ActiveDocument.Close

Properties and methods can take arguments that qualify how they perform. In
the following Word example, the PrintOut method of the Document object
that the ActiveDocument property returns a reference to takes arguments that
specify the range of pages it should print.

ActiveDocument.PrintOut From:="3", To:="7"

You may have to navigate through several layers in an object model to get to
what you consider the real data in the application, such as the values in cells on
a Microsoft Excel worksheet or the text in a Word document. The following Word
example uses the following properties and methods to navigate from the top of
the object model to the text of a document:

� The Application property returns a reference to the Application object.

� The Documents property of the Application object returns a reference
to the Documents collection.

� The Item method of the Documents collection returns a reference to a
single Document object.

Microsoft Office 97/Visual Basic Programmer's Guide Page 46 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

� The Words property of the Document object returns a reference to the
Words collection.

� The Item method of the Words collection returns a reference to a single
Range object.

� The Text property of the Range object sets the text for the first word of
the document.

Application.Documents.Item(1).Words.Item(1).Text = "The "

Because the Documents property is a global property, it can be used without
the Application qualifier, and because Item is the default property or method
for collection objects, you don't need to explicitly mention it in your code. You
can therefore shorten the preceding statement to the statement shown in the
following example. This example implicitly drills down through the same levels
as the previous example does explicitly.

Documents(1).Words(1).Text = "The "

Similarly, the following Microsoft Excel example drills all the way down to the
Range object that represents cell B3 on the worksheet named "New" in the
workbook named "Sales.xls."

Workbooks("Sales.xls").Worksheets("New").Range("B3").Value = 7

Getting Help Writing Code

Sometimes you can guess what object you need to return a reference to, how to
build the expression to return it, and what property or method you need to
apply to it to accomplish a task. For instance, if you want to close the active
Word document, you might guess that the functionality of closing a document
would be controlled by a Close method that applied to the Document object
that was returned by the ActiveDocument property — and you'd be right. Most
of the time, however, figuring out which object, property, and method you want
to use isn't that simple. Fortunately, the Office applications include a host of
tools that help you write the code to perform your tasks.

Using the Macro Recorder

If you don't know which properties and methods you need to use to accomplish
a task but you know how to perform the task (or something very similar to it)
with the user interface, you can use the macro recorder to translate that series
of userinterface actions into a series of Visual Basic instructions. For example, if
you don't know which property or method to use to indent a paragraph in Word,
record the actions you take to indent a paragraph.

To record userinterface actions in Microsoft Excel, Word, or PowerPoint

1. On the Tools menu, point to Macro, and then click Record New Macro.

Microsoft Office 97/Visual Basic Programmer's Guide Page 47 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

2. Change the default macro name and location if you want, and then click
OK to start the macro recorder.

3. In the user interface, perform the tasks you want to accomplish.

4. When you finish your tasks, click the Stop Recording button on the Stop
Recording toolbar.

5. On the Tools menu, point to Macro, and then click Macros.

6. Select the macro name from step 2, and then click Edit.

Examine the Visual Basic code, and try to correlate specific properties and
methods to specific actions you took in the user interface.

Although this code can give you a good idea of what properties and methods to
get more information about, you probably won't want to use the code without
editing it, because the code the macro recorder generates is usually not very
efficient or robust. For example, recorded code generally starts with an object
that's selected or activated when you begin recording and navigates through the
rest of the object model from that object, as shown in the following Word
example.

Selection.ParagraphFormat.LeftIndent = InchesToPoints(0.5)

The following is another example of selectionbased code in PowerPoint:

ActiveWindow.Selection.ShapeRange.Delete

The problem with code like that in the preceding examples, besides being
inefficient, is that it relies on a particular element being selected or activated
when you run the code for it to work properly. Your code will be much more
robust and flexible if it contains expressions to navigate through the object
model that don't begin with the selected or activated object. For example, in
Word, if instead of applying the ParagraphFormat property to the Selection
object that's returned by the Selection property, you apply the Format
property to the Paragraph object that represents a specific paragraph (as
shown in the following example), your code will run correctly no matter what's
selected when you run it.

Documents("Test Document.doc").Paragraphs(1).Format.LeftIndent = Inch

For ideas on how to improve your recorded code, position the insertion point
within a property or method in your code, and then press F1 to see a Help topic
with example code for that property or method. For more information about
using Visual Basic Help to write code, see the following section. For more
information about editing recorded code to make it more efficient, see Chapter
13, "Optimizing for Size and Speed."

Help Files and Graphics

Microsoft Office 97/Visual Basic Programmer's Guide Page 48 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Visual Basic Help for any given Office application contains a topic on each
object, property, method, and event in the object model. To see a graphical
depiction of an application's entire object model, see "Microsoft Access Objects,"
"Microsoft Excel Objects," "Microsoft Word Objects," or "Microsoft PowerPoint
Objects" in Visual Basic Help for that application.

If you cannot tell by looking at an object's name what content and functionality
the object encompasses, you can click that object in the graphic to open its Help
topic and learn more about it. The Help topic for an individual object contains
the following information:

� A graphic at the top of the topic that shows significant objects
immediately above and below the object in the hierarchy (object model).
You can click any object in the graphic to read more about it.

� An explanation of the content and functionality that the object
encompasses.

� Instructions and examples that explain how to navigate through the
object model to get to the object and how to then apply properties and
methods to it. Note that you can copy code from Help topics to use in your
own code.

� Jumps at the top of the topic that display lists of the properties and
methods that apply to the object. You can click the name of a property or
method to open its Help topic.

The Help topic for an individual property or method contains both a description
of the content or functionality that the property or method gives you access to
and a jump to an example that uses the property or method. You can copy code
from Help topics to the Clipboard and then paste this code into your own

How Do I Display Visual Basic Help for Microsoft Excel, Word, and
PowerPoint?

To use Visual Basic Help for Microsoft Excel, Word, or PowerPoint, you
must click Custom during Setup and select the Online Help for Visual
Basic check box for that application. Otherwise, Visual Basic Help won't
be installed. If you've already installed your application, you can run
Setup again to install Visual Basic Help.

To see the contents and index of Visual Basic Help for Microsoft Excel,
Word, or PowerPoint, click Contents and Index on the Help menu in
the Visual Basic Editor. On the Contents tab in the Help Topics dialog
box, doubleclick the book title that includes the name of the application
you're working in (for example, "Microsoft Word Visual Basic Reference"),
and then doubleclick the shortcut in that book (for example, "Shortcut to
Microsoft Word Visual Basic Reference"). The Help Topics dialog box
should reappear, displaying the contents and index for Visual Basic Help
for your application.

Microsoft Office 97/Visual Basic Programmer's Guide Page 49 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

module.

Object Browser

Each Office application provides a file called an object library, or type library,
that contains information about the objects, properties, methods, events, and
builtin constants that the application exposes. You can use a tool called the
Object Browser to look at the information in this file and to browse the object
model it describes.

To open the Object Browser from the Visual Basic Editor (Microsoft Excel, Word,
and PowerPoint) or from a module (Microsoft Access), click Object Browser on
the View menu. In the Project/Library box, click the name of the object
library whose objects you want to see, or click <All Libraries> to view a
master list of all the objects in all the referenced object libraries. If the object
library whose objects you want to view doesn't appear in the Project/Library
box, you must create a reference to that object library by using the References
dialog box (Tools menu).

The Classes box in the Object Browser displays the names of all the objects
and enumerated types in all the referenced object libraries.

Note A class is a type, or description, of object. An object is an actual instance
of a class. For example, the Workbook class contains all the information you
need to create a workbook. A Workbook object only comes into existence when
you use the information in the Workbook class to create an actual workbook
(an instance of the Workbook class). Despite this technical distinction, these
terms are often used interchangeably. The term "object" is used generically for
both "class" and "object" in this chapter.

When you click the name of an object in the Classes box in the Object Browser,
you see all the properties, methods, and events associated with that object in
the Members of box.

Tip An event is an action recognized by an object, such as clicking the mouse
or pressing a key. You can write code to respond to such actions. For general
information about events, see Chapter 1, "Programming Basics." For information
about events for a specific application, see the chapter on that application's
object model, or see the topic for a specific event in Help.

Click a property or method in the Members of box. You can press F1 to see the
Help topic for the selected keyword, or you can look in the Details pane at the
bottom of the Object Browser window to see the following: syntax information,
a property's readonly or read/write status, the object library that the object
belongs to, and the type of data or object that the property or method returns.
If a word in the Details pane is a jump, you can click it to get more
information. This is useful if you want to figure out how to drill down to an
object. For example, in Word, if you click the Application object in the Classes
box and then click the ActiveDocument property in the Members of box, you
see the following phrase in the Details pane:

Property ActiveDocument As Document

This tells you that the ActiveDocument property returns a reference to a

Microsoft Office 97/Visual Basic Programmer's Guide Page 50 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Document object. If you click the return type (the object type or data type
after the keyword As), which in this case is Document, the Object Browser will
display the properties and methods of the Document object.

The Details pane can also be helpful if you cannot remember the exact
syntax — the names and order of arguments that a given property or method
takes, and which arguments are required or optional. For instance, in Word, if
you click the ComputeStatistics method of the Document object that you've
just navigated to, you'll see the following phrase in the Details pane:

Function ComputeStatistics(Statistic As WdStatistic,
[IncludeFootnotesAndEndnotes]) As Long

This tells you that you can apply the ComputeStatistics method to the
Document object and get back a value of type Long, but that you have to
supply some additional information in the form of arguments for the method to
work. Because the argument Statistic isn't in brackets, it's a required
argument — that is, you must supply a value for it for the method to work.
IncludeFootnotesAndEndnotes, which is in brackets, is an optional argument. If
you don't supply a value for it, Visual Basic will use the default value.

If you're already familiar with the ComputeStatistics method, the information
in the Details pane alone may jog your memory enough that you can use this
method in code such as the following example.

MsgBox ActiveDocument.ComputeStatistics(Statistic:=wdStatisticWords,
 IncludeFootnotesAndEndnotes:=True) & " words"

You can copy text from the Details pane and then either paste it into a module
or just drag it and drop it into a module to save yourself some typing. If you
cannot remember what the possible values for the Statistic argument are, click
WdStatistic to see a list of valid constants. If you still don't have enough
information to use the ComputeStatistics method in code, click F1 to get Help.

Note that if you have references to object libraries that contain objects of the
same name and you have <All Libraries> selected in the Project/Library box
in the Object Browser, you'll see duplicate names in the Object Browser. For
example, if you have a reference to the Microsoft Excel and Word object
libraries, you'll see duplicates of the AddIn object, the AddIns object, the
Adjustments object, the Application object, and so on. You can tell these
duplicate objects apart by clicking one of them and looking in the Details pane.
The Details pane shows you which object library the selected keyword is a
member of.

For more information about the Object Browser, see "Object Browser" in Help.

StatementBuilding Tools

There are a number of tools built in to the development environment that help
you build expressions and statements in Visual Basic. To turn these tools on or
off in the Visual Basic Editor (Microsoft Excel, Word, or PowerPoint), select one
or more of the following check boxes under Code Settings on the Editor tab in
the Options dialog box (Tools menu). In Microsoft Access, select one or more
of the following check boxes under Coding Options on the Module tab in the

Microsoft Office 97/Visual Basic Programmer's Guide Page 51 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Options dialog box (Tools menu).

These tools automatically display information and give you appropriate options
to choose from at each stage of building your expression or statement. For
example, with the Auto List Member option selected, type the keyword
Application followed by the dot operator. You should see a box that lists the
properties and methods that apply to the Application object in the first object
library you have referenced. (If you have several object libraries referenced, you
may want to qualify your statements with the library name to make sure you
are returning a reference to the right object. For instance, you may want to use
Excel.Application or Word.Application instead of just Application). You
can select an item from the list and continue typing.

You can get also get help building expressions at any time by clicking List
Properties/Methods, List Constants, Quick Info, Parameter Info, or
Complete Word on the shortcut menu in a module. For more information about
these commands in Microsoft Excel, Word, and PowerPoint, search for the
command names in Visual Basic Help.

Early Binding and the StatementBuilding Tools

When you create an object variable in one application that refers to an object
supplied by another application, Visual Basic must verify that the object exists
and that any properties or methods used with the object are specified correctly.
This verification process is known as binding. Binding can occur at run time (late
binding) or at compile time (early binding). Latebound code is slower than

Option Effect

Auto Syntax Check Determines whether Visual Basic should
automatically verify correct syntax after you
enter a line of code.

Require Variable Declaration Determines whether explicit variable
declarations are required in modules. Selecting
this check box adds the Option Explicit
statement to general declarations in any new
module.

Auto List Member Displays a list that contains information that
would logically complete the statement at the
current location of the insertion point.

Auto Quick Info Displays information about functions and their
parameters as you type.

Auto Data Tips Displays the value of the variable that the
pointer is positioned over. Available only in
break mode.

Auto Indent Repeats the indent of the preceding line when
you press ENTER. That is, all subsequent lines
will start at that indent. You can press
BACKSPACE to remove automatic indents.

Tab Width Sets the tab width, which can range from 1 to
32 spaces (the default is 4 spaces).

Microsoft Office 97/Visual Basic Programmer's Guide Page 52 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

earlybound code. In addition, many of the coding aids that are built into the
development environment work only on earlybound code.

To make your code early bound

1. Set a reference to the type library that contains the objects you want to
refer; do this in the References dialog box (Tools menu).

2. Declare your object variables as specific types. For example, if an object
variable is going to contain a reference to a Document object, declare
the variable as follows.

Dim wdObject As Document

Don't declare the variable as the generic Object type, as shown in the
following declaration.

Dim wdObject As Object

3. If you'll be writing code that uses objects from more than one library,
specify the name of the application when declaring object variables,
especially if the different libraries contain objects with the same name, as
shown in the following two declarations.

Dim wndXL As Excel.Window
Dim wndWD As Word.Window

If a property or method that you use in your code to return a reference to an
object has the generic return type Object instead of a specific object type, you
must take additional steps to ensure that your code is early bound and that the
statementbuilding tools will work.

For example, in Microsoft Excel, the Item method of the Worksheets object
returns the type Object, instead of Worksheet, so you won't get any more
help from the statementbuilding tools after you reach the following point in your
statement.

Workbooks(1).Worksheets(1).

Because the returned object type is Object, which is the generic type for all
objects, the statementbuilding tools don't know what the available properties
and methods are. To get around this, you must explicitly declare an object
variable that has the specific type Worksheet, and you must set that object
variable to the expression that returns a reference to the Worksheet object, as
shown in the following example.

Dim testWS As Worksheet
Set testWs = Workbooks(1).Worksheets(1)

Microsoft Office 97/Visual Basic Programmer's Guide Page 53 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

From this point on, when you type the name of the object variable followed by a
period, the List Properties/Methods command will suggest properties and
methods for the Workbook object that the variable refers to.

Programming Another Application's Objects

You can run code in one Microsoft Office application that works with the objects
in another application.

To program another application's objects

1. Set a reference to the other application's type library in the References
dialog box (Tools menu). After you've done this, the objects, properties,
and methods will show up in the Object Browser and the syntax will be
checked at compile time. You can also get contextsensitive Help on them.

2. Declare object variables that will refer to the objects in the other
application as specific types. Make sure that you qualify each type with by
the name of the application exposes the object. The following example
declares a variable that will point to a Word document and another
variable that refers to a Microsoft Excel workbook.

Dim appWD As Word.Application, wbXL As Excel.Workbook

3. Use the CreateObject function with the OLE programmatic identifier of
the object you want to work with in the other application, as shown in the
following example. If you want to see the session of the other application,
set the Visible property to True.

Dim appWD As Word.Application

Set appWD = CreateObject("Word.Application.8")
appWd.Visible = True

For specific information about the programmatic identifiers exposed by
each Office application, see "OLE Programmatic Identifiers" in Help.

4. Apply properties and methods to the object contained in the variable. The
following example creates a new Word document.

Dim appWD As Word.Application

Set appWD = CreateObject("Word.Application.8")
appWD.Documents.Add

5. When you finish working with the other application, use the Quit method
to close it, as shown in the following example.

Microsoft Office 97/Visual Basic Programmer's Guide Page 54 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

appWd.Quit

Contents
� Objects Available in Microsoft Access
� The Microsoft Access Objects
� The Application Object
� The Form Object and the Forms Collection
� The Report Object and the Reports Collection
� The Control Object and the Controls Collection
� The Module Object and the Modules Collection
� The Reference Object and the References Collection
� The DoCmd Object
� The Screen Object

A Microsoft Access database is made up of different types of objects. Some
types are used to display the data in your database, while others are used to
store and manage the data itself, or to assist you in programming in Visual
Basic. You can use Visual Basic to create, control, and manage all of the
different types of objects in a Microsoft Access database.

Some of the objects that are available to you from Visual Basic in Microsoft
Access are supplied by Microsoft Access; others are provided by different
components. The objects provided by Microsoft Access represent the forms,
reports, controls, and modules in your application. This chapter explains how to
program with Microsoft Access objects in Visual Basic.

Objects Available in Microsoft Access

When you program in Visual Basic, you work with objects that correspond to
different parts of your Microsoft Access database. Collections are sets of objects
of the same type. Programming with objects and collections gives you added
flexibility in that you can design your Microsoft Access application to respond to
user actions and input in a customized way.

Microsoft Access includes several components, each of which supplies its own
set of objects. The component's object library contains information about the
component's objects and their properties and methods. A component's objects
are available to Microsoft Access only if a reference exists to the component's
object library. A reference notifies Microsoft Access that the objects in a
particular object library are available from Visual Basic. To view existing
references, open a module and click References on the Tools menu. To set a

C H A P T E R 3 Microsoft Office 97/Visual Basic Programmer's Guide

Microsoft Access Objects

Microsoft Office 97/Visual Basic Programmer's Guide Page 55 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

reference, select the check box next to the object library you want to reference.

Microsoft Access automatically sets references to the following object libraries:

� The Microsoft Access 8.0 object library. This object library provides
objects that you use to display your data, contain your code, and work
with the Microsoft Access application. For example, the Form, Module,
and Application objects are provided by the Microsoft Access 8.0 object
library. These objects are discussed in this chapter.

� The Microsoft DAO 3.5 object library. This object library provides Data
Access Objects (DAO), such as the TableDef and QueryDef objects,
which determine the structure of your database and which you can use to
manipulate data in Visual Basic. These objects are discussed in Chapter
11, "Data Access Objects."

� The Visual Basic for Applications object library. Visual Basic provides three
objects that give you more flexibility in programming: the Debug, Err,
and Collection objects. For more information on these objects, search
Microsoft Access Help for the name of the object.

Microsoft Access also includes the Microsoft Office 8.0 object library. However,
Microsoft Access doesn't automatically set a reference to the Microsoft Office 8.0
object library. If you want to work with objects provided by Microsoft Office,
such as the CommandBar, FileSearch, and Assistant objects, from within
Microsoft Access, you must first set a reference to the Microsoft Office 8.0 object
library. In other Office applications, this reference is set automatically. The
objects provided by the Microsoft Office 8.0 object library are discussed in
Chapter 8, "Menus and Toolbars," and Chapter 9, "Microsoft Office Assistant."

You can also set references to object libraries supplied by other applications or
components when you want to use objects in those libraries for Automation. For
example, if you want to perform Automation operations with Microsoft Excel
objects from Microsoft Access, you can set a reference to the Microsoft Excel
object library.

If you want to work with Microsoft Access objects from another application that
supports Automation, set a reference to the Microsoft Access 8.0 object library
from that application. You can then work with the objects in the Microsoft
Access object hierarchy from within that application. For more information, see
"Using the Application Object for Automation Operations" later in this chapter.

The Microsoft Access Objects

The following table describes the objects and collections provided by the
Microsoft Access 8.0 object library. Each of these objects and collections is
discussed in more detail later in this chapter.

Microsoft Office 97/Visual Basic Programmer's Guide Page 56 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Microsoft Access objects are organized in a hierarchical relationship. Objects
contain collections, and collections contain other objects. The following
illustration shows the hierarchy of Microsoft Access objects.

Each Microsoft Access object has properties, methods, and events associated
with it. You can view these properties, methods, and events in the Object
Browser. To open the Object Browser, open a module, and then click Object
Browser on the View menu. You can also open the Object Browser by pressing
F2 when a module is open.

The Application Object

The Application object represents the Microsoft Access application and is the
toplevel object in the Microsoft Access object hierarchy. It contains all the other

Object or collection Description

Application object Represents the Microsoft Access application.

Form object Represents an open form.

Forms collection Contains all currently open forms.

Report object Represents an open report.

Reports collection Contains all currently open reports.

Control object Represents a control on a form, report, or
section, or within another control.

Controls collection Contains all controls on a form or report.

Module object Represents a standard module or a class
module.

Modules collection Contains all currently open modules.

Reference object Represents a reference to an object library.

References collection Contains all references that are currently set.

DoCmd object Runs a macro action in Visual Basic.

Screen object Represents the current arrangement of objects
on the screen.

Microsoft Office 97/Visual Basic Programmer's Guide Page 57 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Microsoft Access objects and collections. It's also the object you must first
reference in order to use Microsoft Access objects through Automation.

The Application object is the default object in the object hierarchy. When
you're working within Microsoft Access, you don't need to explicitly refer to the
Application object when you use one of its methods or properties, or when you
refer to an object or collection that the Application object contains. The only
time you need to explicitly refer to the Application object is when you're
working with Microsoft Access objects from another application through
Automation. However, you can refer to the Application object explicitly from
within Microsoft Access if you want to.

Using the Application Object for Automation
Operations

If you want to work with Microsoft Access objects from another application that
supports Automation, such as Microsoft Excel or Microsoft Visual Basic, you
should begin by setting a reference to the Microsoft Access 8.0 object library
from that application. Once you've set a reference to the Microsoft Access object
library, you can work with the Microsoft Access objects, beginning with the
Application object. The Application object is the toplevel object in the
Microsoft Access object hierarchy, so you must first refer to it in code before you
can work with the other objects in the object hierarchy.

To work with Microsoft Access objects from another application, you must
perform the following steps from within that application:

1. Set a reference to the Microsoft Access object library from the application
in which you are working.

2. Declare an object variable to represent the Microsoft Access Application
object.

3. Return a reference to the Application object and assign that reference to
the object variable.

To set a reference to the Microsoft Access object library, open a module, click
References on the Tools menu, and then select the Microsoft Access 8.0
Object Library check box in the Available References box.

After you've set a reference to the Microsoft Access object library, you can
declare a variable of type Application to represent the Microsoft Access
Application object. Because other applications have their own Application
objects, you must qualify an object variable of type Application when you
declare it so that Visual Basic creates the Microsoft Access Application object.

You qualify an object variable with the Visual Basic name of the object library
that supplies it. Once you've set a reference to an object library, its name is
available in the Project/Library box in the Object Browser. The Visual Basic
name of the Microsoft Access object library is Access. The following example
declares a variable to represent the Application object.

Dim appAccess As Access.Application

Microsoft Office 97/Visual Basic Programmer's Guide Page 58 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

You can also declare an object variable to represent the Application object as
type Object. However, your code will run faster if you declare the object
variable as type Application.

Note Whenever you're working with multiple components through Automation,
it's a good idea to qualify objects with the name of the object library that
supplied them. If you qualify all objects, you can always be sure that you're
referring to the correct object.

After you've declared an object variable to represent the Application object,
you must return a reference to the Application object and assign that reference
to the object variable. You can return a reference to the Application object by
using either the CreateObject or the GetObject function, and you can assign
that reference to the object variable with the Set statement. Use the
CreateObject function to open Microsoft Access and return a reference to the
Application object if Microsoft Access is not already running. Use the
GetObject function to return a reference to the Application object when
Microsoft Access is already running. The following example uses the
CreateObject function to open Microsoft Access 97 and return a reference to
the Application object, and then assigns it to an object variable of type
Application.

Dim appAccess As Access.Application
Set appAccess = CreateObject("Access.Application.8")

Note If your code may run on a computer that has more than one version of
Microsoft Access, you can include the version number you want to use in the
argument for the CreateObject or GetObject function. The preceding example
opens Microsoft Access 97, which is version 8.0. Microsoft Access 95 is version
7.0.

If the application in which you are working supports the New keyword, you can
use the New keyword to declare an object variable, return a reference to the
Application object, and assign it to the object variable all in one step, as
shown in the following example.

Dim appAccess As New Access.Application

When a procedure that contains this code runs, Visual Basic returns a reference
to the Application object and assigns it to the object variable. However, Visual
Basic doesn't actually open Microsoft Access until you begin working with the
object variable in code. In the following example, the declaration that contains
the New keyword assigns a reference to the Application object to the object
variable, but Microsoft Access doesn't open until the NewCurrentDatabase
method runs.

Dim appAccess As New Access.Application
appAccess.NewCurrentDatabase "NewDb.mdb"

After you've created an object variable that represents the Application object,
you can use it to work with any object in the Microsoft Access object hierarchy.
For example, you can open the Northwind sample database, use the DoCmd

Microsoft Office 97/Visual Basic Programmer's Guide Page 59 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

object to open the Employees form, and then work with the Form object that
represents the Employees form. To do this, add the following procedure to a
Visual Basic module in Microsoft Excel and then run it.

Sub OpenNorthwindEmployees()
Dim appAccess As New Access.Application

Const conPath As String = "C:\Program Files\Microsoft Office\
& "\Samples\Northwind.mdb"

With appAccess
' Open the Northwind sample database.
.OpenCurrentDatabase conPath
' Open the Employees form.
.DoCmd.OpenForm "Employees"
' Set the form's caption.
.Forms!Employees.Caption = "Northwind Employees"

End With
End Sub

To work with CommandBar objects, you must first set a reference to the
Microsoft Office 8.0 object library. You can set the reference from within
Microsoft Access in the References dialog box (Tools menu). If you're working
with Microsoft Access through Automation, you can set a reference to the Office
object library from the other application. You can then use the CommandBars
property of the Microsoft Access Application object to return a reference to the
Office CommandBars collection.

You can also work with Data Access Objects (DAO) by first setting a reference to
the Microsoft DAO 3.5 object library, then by using the DBEngine property of
the Microsoft Access Application object to return a reference to the DAO
DBEngine object. You can access all objects in the DAO object hierarchy
through the DBEngine object, which is the toplevel object in the hierarchy.

For more information about using Office CommandBar objects and DAO
objects, see Chapter 8, "Menus and Toolbars," and Chapter 11, "Data Access
Objects."

The Form Object and the Forms Collection

The Form object represents a Microsoft Access form that is open in Design
view, Form view, or Datasheet view. Form objects are grouped in the Forms
collection, which is a member of the Microsoft Access Application object. The
Forms collection contains only the forms that are currently open in the
database.

The following table shows the relationship between the Form object and the
Forms collection and other objects and collections in the Microsoft Access
object hierarchy.

Microsoft Office 97/Visual Basic Programmer's Guide Page 60 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Referring to Form Objects

To work with a Form object in Visual Basic, you need to refer to the Form
object in the Forms collection. To refer to a form, you must make sure that the
form is open. To open a form with Visual Basic, use the OpenForm method of
the DoCmd object.

If you refer to an individual Form object repeatedly within a procedure, you
should declare an object variable to represent the Form object. If you know the
name of the form, you can use the ! operator syntax to refer to the Form object
in the Forms collection by name. For example, the following code returns a
reference to the Employees form and assigns it to a variable of type Form.

Dim frm As Form
Set frm = Forms!Employees

If you need to return a reference to a Form object and you won't know its name
until run time, you can use the parentheses syntax to refer to the Form object
within the Forms collection. This is useful if you want to pass the name of the
form to a procedure as a variable, as shown in the following example.

Function SetFormCaption(strFormName As String)
Dim frm As Form

' Open the form.
DoCmd.OpenForm strFormName
' Return a reference to the Form object.
Set frm = Forms(strFormName)
' Change the form's caption.
frm.Caption = Date

End Function

You can also refer to an individual Form object by its index number, which
indicates its position within the Forms collection. The Forms collection is
indexed beginning with zero. That is, the index number for the first Form object
in the Forms collection is 0, the second is 1, and so on.

Finally, if you need to set a Form object's property or call a method, but you
don't need to use the Form object repeatedly throughout the procedure, you
can refer to the form's class module directly in order to set the property or call
the method. For example, the following code makes the form visible on the
screen.

Object or collection Is contained by Contains

Form object Forms collection Controls collection

Properties collection

Module object

Forms collection Application object Form objects

Microsoft Office 97/Visual Basic Programmer's Guide Page 61 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Form_Employees.Visible = True

For more information about class modules, see "Standard Modules vs. Class
Modules" later in this chapter.

Properties of the Form Object

The properties of the Form object are too numerous to include in this chapter,
so this section discusses only a few that deserve special consideration. To see
all of the available properties of the Form object, search Microsoft Access Help
for "Form object," or view the members of the Form object in the Object
Browser.

The Me Property

The Me property returns a reference to the form in which code is currently
running. You can use the Me property in procedures within a form module as
shorthand for the full form reference. You can also use it to pass a Form object
to a procedure without knowing the name of the form. If you use the Me
property in code behind a form, you can rename the form without having to
update your code.

The following example shows how you can use the Me property within an event
procedure in a form module. This procedure sets the BackColor property of the
form's detail section to a random color.

' Add this procedure to form module.
Private Sub Form_Load()

' Initializes random number generator.
Randomize
' Sets BackColor property of form section.
Me.Section(acDetail).BackColor = RGB(Rnd * 256, Rnd * 256, Rn

End Sub

The following example also sets the detail section's BackColor property, but the
Load event procedure passes a reference to the Form object to a procedure in a
standard module. This strategy is preferable, because you can call the
procedure in the standard module from any form, not just the one that contains
the Load event.

' Add this procedure to form module.
Private Sub Form_Load()

' Passes reference to current form to ChangeBackColor procedu
ChangeBackColor Me

End Sub

' Add this procedure to standard module.
Public Sub ChangeBackColor(frm As Form)

Randomize
frm.Section(acDetail).BackColor = RGB(Rnd * 256, Rnd * 256, R

End Sub

Microsoft Office 97/Visual Basic Programmer's Guide Page 62 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Note that when you're working with a Microsoft Access form from another
application through Automation, you can't use the Me property to refer to the
form from that application. You can only use the Me property to refer to a form
in code within that form's module. The same is true for reports.

The Section Property

A form is divided into five sections: detail, header, footer, page header, and
page footer. The Section property returns a reference to a particular section of
a form. Once you've returned a reference to a form section, you can set
properties for that section.

A number of properties apply to a form section rather than a Form object. For
example, the BackColor property applies to a form section, not to a form, as
shown in the preceding example. A section also has a Controls property, which
returns a reference to the Controls collection for that section. The following
example prints the names of all controls in the detail section of a form to the
Debug window.

Sub ControlsBySection(frm As Form)
Dim ctl As Control

' Enumerate the controls in the detail section.
For Each ctl In frm.Section(acDetail).Controls

Debug.Print ctl.Name
Next ctl

End Sub

The Properties Property

The Properties property returns a reference to the Properties collection of a
Form object. The Properties collection contains all of the properties of the
form. You can enumerate the Properties collection with the For Each...Next
statement. Note that you can't add a new property to the Properties collection.
The following example prints all the properties of a Form object to the Debug
window.

Sub EnumerateFormProperties(frm As Form)
Dim prp As Property

' Enumerate the properties of a form.
For Each prp In frm.Properties

Debug.Print prp.Name, prp.Value
Next prp

End Sub

The Module Property

The Module property returns a reference to the Module object associated with
a form. You can assign this reference to a variable of type Module.

The module associated with a form doesn't automatically exist when the form is
created. When you refer to the Module property, the module is created if it

Microsoft Office 97/Visual Basic Programmer's Guide Page 63 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

doesn't already exist. For more information, see the following section,"Form
Modules."

The RecordSource Property

The RecordSource property binds a table or query to a form. After you've set
the RecordSource property to the name of a table or query or to an SQL
statement, you can display data from that table, query, or SQL statement on
the form.

Form Modules

A Form object can have an associated module, which is represented by a
Module object. However, the module does not exist when you first create the
form. There are three ways to specify that Microsoft Access should create a
module for a form:

� Click Code on the View menu when the form is open in Design view. The
module opens and is subsequently saved with the form, even if you don't
add any code to it.

� Set the form's HasModule property to True. You can set this property in
the Microsoft Access property sheet or in Visual Basic. Note that setting
this property to False removes the module and all code within it.

� Refer to the form's Module property in Visual Basic. The Module property
returns a reference to the Module object associated with the form,
creating it first if it does not already exist.

If you don't need to add code to a particular form, then you don't need to create
a module for it. Forms without modules open more quickly. Also, eliminating
unnecessary modules reduces the size of your database.

A form module contains any event procedures that you define for the form. You
can also add other procedures to the form module. However, you should include
only procedures that are specific for that form. If you want a procedure to be
available to other procedures throughout the database, place that procedure in
a standard module.

Creating Forms at Run Time

If you want to create a new form at run time, you can use the CreateForm
function. This can be useful if you are creating an addin for Microsoft Access. For
example, you may want to create an addin that adds a custom address book
form to a database based on information provided by the user at run time. You
can use the CreateForm function to generate the form in Visual Basic. You can
also use the CreateControl function and the DeleteControl statement to add
controls to or delete controls from the new form.

You can also add code to the form module at run time by using the methods
and properties of the Module object. For example, the CreateEventProc
method of the Module object creates an event procedure for a specified
object — a form, report, section, or control. The InsertLines method inserts

Microsoft Office 97/Visual Basic Programmer's Guide Page 64 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

lines of code at a specified position in the module. The following example
creates a new form and adds an event procedure to its module.

Function CreateFormWithCode () As Boolean
Dim frm As Form, mdl As Module
Dim lngLine As Long, strLine As String

' Enable error handling.
On Error GoTo Error_CreateFormWithCode
' Create new form and return reference to Form object.
Set frm = CreateForm
' Return reference to form module.
Set mdl = frm.Module
' Create Load event procedure in form module.
lngLine = mdl.CreateEventProc("Load", "Form")
strLine = vbTab & "Me.Caption = " & Date
' Set form's caption in Load event.
mdl.InsertLines lngLine + 1, strLine
' Return True if function is successful.
CreateFormWithCode = True

Exit_CreateFormWithCode:
Exit Function

Error_CreateFormWithCode:
MsgBox Err & ": " & Err.Description
CreateFormWithCode = False
Resume Exit_CreateFormWithCode

End Function

For more information about writing and manipulating code with methods and
properties of the Module object, see "The Module Object and the Modules
Collection" later in this chapter, or search Microsoft Access Help for "Module
object."

The Report Object and the Reports Collection

The Report object represents a Microsoft Access report that is open in Design
view, Print Preview, or Layout Preview. Report objects are grouped in the
Reports collection, which is a member of the Microsoft Access Application
object. The Reports collection contains only the reports that are currently open
in the database.

The following table shows the relationship between the Report object and the
Reports collection and other objects and collections in the Microsoft Access
object hierarchy.

Report objects and Form objects have similar characteristics. This section only
summarizes the characteristics of the Report object, because the same

Object or collection Is contained by Contains

Report object Reports collection Controls collection
Properties collection
Module object

Reports collection Application object Report objects

Microsoft Office 97/Visual Basic Programmer's Guide Page 65 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

characteristics have been described in detail in the previous section, "The Form
Object and the Forms Collection." For a list of the properties, methods, and
events of the Report object, search Microsoft Access Help for "Report object,"
or view the members of the Report object in the Object Browser.

Referring to Report Objects

To work with a Report object in Visual Basic, you need to refer to the Report
object in the Reports collection. To refer to a report, you must make sure that
the report is open. To open a report with Visual Basic, use the OpenReport
method of the DoCmd object.

You can refer to a Report object and assign it to an object variable in one of
the following ways:

Dim rpt As Report
Set rpt = Reports!Invoice ' Returns a reference to the Invoice
Set rpt = Reports("Invoice") ' Returns a reference to the Invoice
Set rpt = Reports(0) ' Returns a reference to the first re

' the collection.

Report Modules

Like a Form object, a Report object can have an associated module that is a
class module. This module doesn't exist until you create it. You can create a
report module by clicking Code on the View menu while the report is open in
Design view, by setting the report's HasModule property to True, or by
referring to the report's Module property in Visual Basic.

Creating Reports at Run Time

To create a new report at run time, use the CreateReport function. To add
controls to or delete controls from a report at run time, use the
CreateReportControl function or the DeleteReportControl statement.

The following example uses Automation from Microsoft Excel to create a linked
table in a Microsoft Access database, and then creates a Microsoft Access report
based on the data in the linked table. To use this example, you need to create a
Microsoft Excel workbook named Revenue.xls, add some data to a worksheet in
that workbook, and create a named range called DataRange that includes this
data. Then, enter the following code in a module in the Microsoft Excel
workbook. Before you run this example, you must set a reference to the
Microsoft Access 8.0 object library and the DAO 3.5 object library from Microsoft
Excel.

Important Before you run this code, make sure that the Microsoft Excel ISAM
driver (Msexcl35.dll) is installed on your system. If it's not, you need to run
Setup again to install it. The Microsoft Excel ISAM driver enables Microsoft
Excel 97 files to work with the Microsoft Jet database engine. For more
information on working with the Microsoft Excel ISAM driver, search Microsoft
Access Help for "Microsoft Excel driver."

' Enter in Declarations section of a module.

Microsoft Office 97/Visual Basic Programmer's Guide Page 66 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Dim appAccess As New Access.Application

Sub PrintReport()

Dim rpt As Access.Report, ctl As Access.TextBox
Dim dbs As DAO.Database, tdf As DAO.TableDef, fld As DAO.Fiel
Dim strDB As String, intLeft As Integer

' Set this constant to the path to your Northwind sample data
Const conPath As String = "C:\Program Files\Microsoft Office\

' Open database in Microsoft Access, specifying full path nam
appAccess.OpenCurrentDatabase conPath & "Northwind.mdb"
' Return reference to current database.
Set dbs = appAccess.CurrentDb
' Create new TableDef object.
Set tdf = dbs.CreateTableDef("XLData")
' Specify connection string for Microsoft Excel ISAM driver.
tdf.Connect = "EXCEL 8.0; Database=C:\My Documents\Revenue.xl
' Specify source table as a named range in a worksheet.
tdf.SourceTableName = "DataRange"
' Append new linked table to database.
dbs.TableDefs.Append tdf
' Create new report in Microsoft Access.
Set rpt = appAccess.CreateReport
' Specify linked table as report's record source.
rpt.RecordSource = tdf.Name

' Create control on report for each field in linked table.
For Each fld In tdf.fields

Set ctl = appAccess.CreateReportControl(rpt.Name, acT
fld.Name, intLeft)

intLeft = intLeft + ctl.Width
Next fld

' Open report in Print Preview.
appAccess.DoCmd.OpenReport rpt.Name, acViewPreview
' Restore report.
appAccess.DoCmd.Restore
' Display Microsoft Access as active application.
AppActivate "Microsoft Access"

End Sub

The Control Object and the Controls
Collection

The Control object represents a control on a Microsoft Access form or report.
Control objects are grouped in Controls collections. The following table shows
the relationship between the Control object and the Controls collection and
other objects and collections in the Microsoft Access object hierarchy.

Object or collection Is contained by Contains

Microsoft Office 97/Visual Basic Programmer's Guide Page 67 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Two types of controls are available to you in Microsoft Access. The Microsoft
Access 8.0 object library provides builtin controls, which are available in the
toolbox. In addition to the builtin controls that appear in the toolbox, Microsoft
Access supports ActiveX controls, formerly called OLE controls or custom
controls.

The Microsoft Access Controls

The following table describes the builtin controls available in Microsoft Access.
The controls are listed by their class names, as they appear in the Object
Browser.

Control object Controls collection Controls collection, if the
control is either an option
group or a tab control

Properties collection

Hyperlink object

Control objects

Controls collection Form objects

Report objects

Control objects, if the
control is an option group,
tab control, text box,
option button, toggle
button, check box, combo
box, list box, command
button, bound object
frame, or unbound object
frame

Control Description

BoundObjectFrame Displays a picture, chart, or OLE object stored
in a Microsoft Access table.

CheckBox Indicates whether an option is selected.

ComboBox Combines a list box and a text box.

CommandButton Starts an operation when the user clicks it.

Image Displays a picture.

Label Displays descriptive text.

Line Displays a horizontal, vertical, or diagonal line.

ListBox Displays a list of values.

ObjectFrame Displays a picture, chart, or OLE object that is
not stored in a table.

Microsoft Office 97/Visual Basic Programmer's Guide Page 68 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

For a list of the properties, methods, and events supported by each control,
search Microsoft Access Help for the name of that control, or view the control's
members in the Object Browser.

ActiveX Controls

An ActiveX control, like a builtin control, is an object that you place on a form to
display data or perform an action. However, unlike a builtin control, the code
that supports the ActiveX control is stored in a separate file or files which you
must install in order to use the control.

The following ActiveX controls are available for you to use with Microsoft
Access:

� The Calendar control, which makes it easy to display and update a
monthly calendar on a form. You can choose to install this control when
you install Microsoft Access.

� The WebBrowser control, which you can use to display Web pages and
other documents in a Microsoft Access form. The WebBrowser control is
supplied by Microsoft Internet Explorer version 3.0, which is available in
the ValuPack folder on the Microsoft Office 97 or Microsoft Access 97 CD-
ROM. Alternatively, if you have access to the World Wide Web, you can
download Microsoft Internet Explorer version 3.0 from the Microsoft home
page, at http://www.microsoft.com/. When you install Microsoft Internet
Explorer, the WebBrowser control is automatically available for you to use
in Microsoft Access.

� For examples of the Calendar control and the WebBrowser control, see the
Developer Solutions sample application that's included with Microsoft
Access.

If you have Microsoft Office 97, Developer Edition, you have additional ActiveX
controls, as described in the following table.

OptionButton Indicates whether an option is selected.

OptionGroup Displays a set of options together.

Page Displays controls on a page of a tab control.

PageBreak Marks the start of a new screen or printed
page.

Rectangle Displays a rectangle.

SubForm/SubReport Displays a form within another form or a report
within another report.

TabControl Displays multiple pages, each of which can
contain controls.

TextBox Displays text data.

ToggleButton Indicates whether an option is on or off.

Microsoft Office 97/Visual Basic Programmer's Guide Page 69 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

For more information about using ActiveX controls, see Chapter 12, "ActiveX
Controls and Dialog Boxes," or search Microsoft Access Help for the name of the
control. For information on the properties, methods, and events supported by an
ActiveX control, see the documentation for that control, or set a reference to the
control's object library and view its members in the Object Browser.

Referring to Control Objects

If you refer to a particular Control object repeatedly throughout a procedure,
you may want to declare a variable to represent the Control object. If the
control is a Microsoft Access control and you know what type of control it is, you
can declare a variable of a specific control type. The following example declares
a variable of type TextBox.

Dim txt As TextBox

If you don't know what type of control your code may refer to when it runs, or if
it will refer to an ActiveX control, you must declare a variable of the more
generic type Control to represent the control. For example, if you define a

Control Description

Animation Displays animations stored in .avi files.

TabStrip Displays multiple pages, each of which can
contain multiple controls.

ListView Displays data items in one of four list views.

TreeView Displays data in an expandable tree format.

ImageList Contains a set of images for use with other
ActiveX controls.

ToolBar Displays a custom toolbar with buttons.

StatusBar Displays status information associated with a
form.

ProgressBar Shows the progress of a lengthy operation by
filling a rectangle with blocks from left to right.

Slider Reflects a value or a range of values with a
movable slider.

RichTextBox Displays text with rich text formatting features.

CommonDialog Displays one of a standard set of dialog boxes
for operations such as opening, saving, and
printing files or selecting colors and fonts.

UpDown Increments or decrements numbers, or scrolls
through a range of values or a list of items.

Winsock Provides easy access to Transfer Control
Protocol (TCP) and User Datagram Protocol
(UDP) network services.

Microsoft Office 97/Visual Basic Programmer's Guide Page 70 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

procedure to which you can pass different types of controls, then you should
declare an argument of type Control, as shown in the following code. You can
pass any control to this function, but the function will return True only for
controls that contain a valid hyperlink.

Function FollowControlHyperlink(ctl As Control) As Boolean
Const conNoHyperlink As Integer = 7976

' Enable error handling.
On Error GoTo Error_FollowControlHyperlink
' Follow control's hyperlink.
ctl.Hyperlink.Follow
' Return True if successful.
FollowControlHyperlink = True

Exit_FollowControlHyperlink:
Exit Function

Error_FollowControlHyperlink:
If Err = conNoHyperlink Then

FollowControlHyperlink = False
End If

End Function

To refer to an individual Control object in a Controls collection when you know
the control's name, use the ! operator syntax, as shown in the following
example. Note that you use the Set statement when you're returning a
reference to an object and assigning it to an object variable.

Set txt = Forms!Employees!LastName ' Returns reference to LastNa
' control on Employees form.

If you're referring to a control on the form in which code is currently running,
you can use the Me keyword to represent the form, as shown in the following
example.

Set txt = Me!LastName ' Returns reference to LastName contr
' form in which code is running.

If you need to return a reference to a Control object and you don't know its
name when you're writing the procedure, you can use the parentheses syntax to
refer to the Control object within the Controls collection. This is useful if you
want to pass the name of the control to a procedure as a variable. You can also
refer to an individual Control object by its index number, which indicates its
position within the Controls collection. The Controls collection is indexed
beginning with 0 (zero). That is, the index number for the first Control object
in the Controls collection is 0, the second is 1, and so on.

Properties of the Control Object

The properties that apply to controls are too numerous to include in this
chapter, so this section discusses only two that deserve special consideration.
To see all of the available properties of the Control object, search Microsoft
Access Help for "Control object," or view the members of the Control object in
the Object Browser.

Microsoft Office 97/Visual Basic Programmer's Guide Page 71 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

The Hyperlink Property

The Hyperlink property returns a reference to a Hyperlink object. A
Hyperlink object represents a text or graphic that contains a jump to a file, a
location in a file, an HTML page on the World Wide Web, or an HTML page on an
intranet.

The controls that support the Hyperlink property include the combo box,
command button, image, label, and text box controls. Each of these controls
can display a hyperlink that the user can click to follow. When you have a
reference to a Hyperlink object in a control, you can use the Follow method of
the Hyperlink object to follow the hyperlink, as shown in the example in the
previous section.

For more information about hyperlinks, see Chapter 15, "Developing
Applications for the Internet and World Wide Web."

The ControlType Property

The ControlType property indicates what type of control a particular Control
object is. For example, the following procedure checks the ControlType
property for each control on a form and sets the Locked property of text boxes
and combo boxes to True.

Function LockTextControls(frm As Form) As Boolean
Dim ctl As Control

' Enable error handling.
On Error GoTo Error_LockTextControls

' Enumerate controls on form.
For Each ctl In frm.Controls

' If control is text box or combo box, set Locked pro
If ctl.ControlType = acTextBox Or ctl.ControlType = a

ctl.Locked = True
End If

Next ctl
' Return True if successful.
LockTextControls = True

Exit_LockTextControls:
Exit Function

Error_LockTextControls:
MsgBox Err & ": " & Err.Description
LockTextControls = False
Resume Exit_LockTextControls

End Function

DataBound Controls

Some controls in Microsoft Access can be databound, which means they display
data that is stored in a table, query, or SQL statement. The Microsoft Access
databound controls include the bound object frame, check box, combo box, list
box, option button, option group, text box, subform, and subreport controls.

Microsoft Office 97/Visual Basic Programmer's Guide Page 72 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Some ActiveX controls, such as the Calendar control, can also be databound.
Databound controls have a ControlSource property, which you can set to the
name of a field in a table, query, or SQL statement to specify that the control
should display data from that field. Note that before you can set the
ControlSource property of a control, you must set the RecordSource property
of the form or report to specify which table, query, or SQL statement supplies
the data to the form or report.

The following example sets the RecordSource property of a form and the
ControlSource property of a text box control in the form's Load event.

Private Sub Form_Load()
' Sets form's record source to Employees table.
Me.Recordsource = "Employees"
' Sets ControlSource property of text box to LastName field.
Me!Text0.ControlSource = "LastName"

End Sub

Controls That Have a Controls Collection

Several controls have a Controls collection that can contain other controls. The
option group control and the tab control can both contain multiple controls. The
option group control has a Controls collection, which can contain option button,
toggle button, check box, and label controls. The tab control has a Pages
collection, and each Page object in the Pages collection has a Controls
collection. The Controls collection for a Page object contains the Control
objects on that page.

The following example displays the name of the first control on the first page of
a tab control on an Employees form.

Dim tbc As TabControl, pge As Page
Dim txt As TextBox

' Return reference to tab control.
Set tbc = Forms!Employees!TabCtl0
' Return reference to first page.
Set pge = tbc.Pages(0)
' Return reference to text box on page.
Set txt = pge.Controls(0)
MsgBox txt.Name

Other controls have a Controls collection that can contain a single control: an
attached label. These controls include the text box, option group, option button,
toggle button, check box, combo box, list box, command button, bound object
frame, and unbound object frame controls.

The Module Object and the Modules Collection

The Module object represents a module in Microsoft Access. Module objects
are contained in the Modules collection, which is a member of the Microsoft
Access Application object. A Form or Report object can also contain a single
Module object.

Microsoft Office 97/Visual Basic Programmer's Guide Page 73 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

The set of all modules in a Microsoft Access database make up the Visual Basic
project for that database. The Modules collection contains all the currently
open modules in the project. Modules that are not open for editing are not
included in the Modules collection. To open a module in Visual Basic, use the
OpenModule method of the DoCmd object.

The following table shows the relationship between the Module object and the
Modules collection and other objects in the Microsoft Access object hierarchy.

Referring to Module Objects

To work with a Module object in Visual Basic, you need to refer to the Module
object in the Modules collection. To refer to a module, you must make sure
that the module is open. You can refer to a standard or class Module object and
assign it to an object variable in any of the following ways:

Dim mdl As Module
Set mdl = Modules![Utility Functions] ' Returns a reference to the

' Utility Functions module.
Set mdl = Modules("Utility Functions") ' Returns a reference to the

' Utility Functions module.
Set mdl = Modules(0) ' Returns a reference to the

' module in the collection.

A form or report class module that's open is included in the Modules collection.
To refer to a form or report class module that's not open, use the Module
property of the form or report to return a reference to the associated Module
object, as discussed earlier in this chapter.

Standard Modules vs. Class Modules

Microsoft Access contains two types of modules: standard modules and class
modules. Both types of modules are available in the Modules tab of the
Database window. A form or report can also have an associated class module.

When you write code that you want to be available to any procedure in the
project, you should put that code in a standard module. Standard modules are
public by default, which means that any procedure in the project can call a
procedure or use a modulelevel variable defined in a standard module. Also, if
you set a reference to a project in a Microsoft Access database from another
Microsoft Access project, you can call code in a standard module in the project
to which you've set the reference.

Object or collection Is contained by Contains

Module object Modules collection

Form objects

Report objects

None

Modules collection Application object Module objects

Microsoft Office 97/Visual Basic Programmer's Guide Page 74 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Class modules, on the other hand, are always private. You can use class
modules to create custom objects to use within the current project. However,
you can't share those objects with other projects. The Sub and Function
procedures that you define within a class module become methods of the
custom object defined by the class module, and any Property Let, Property
Get, and Property Set procedures become its properties.

You use the class module associated with a form or report to define event
procedures for the form or report and its controls. You can also add any
procedures that you want to be available only to that particular form or report.

For more information about standard modules and class modules, search
Microsoft Access Help for "standard modules" or "class modules."

Properties of the Module Object

The following table describes the properties of the Module object.

Determining the Number of Lines in a Module

The lines in a module are numbered beginning with 1. The number of the last
line in a module is equal to the value of the CountOfLines property. The
number of the last line in the Declarations section of a module is equal to the
value of the CountOfDeclarationLines property.

Property Description

Application Returns a reference to the Application object.

CountOfDeclarationLines Returns the number of lines of code in the
Declarations section of a module.

CountOfLines Returns the number of lines of code in a
module.

Lines Returns the text of a specified line or lines of
code.

Name Returns the name of a module.

Parent Returns a reference to the object or collection
that contains the module.

ProcBodyLine Returns the number of the line on which the
procedure definition begins.

ProcCountLines Returns the number of lines in a procedure.

ProcOfLine Returns the name of the procedure that
contains a particular line.

ProcStartLine Returns the number of the line on which a
procedure begins.

Type Indicates whether a module is a class module
or a standard module.

Microsoft Office 97/Visual Basic Programmer's Guide Page 75 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Note Line numbers don't actually appear in a module; they're used only for
reference.

Working with Procedures

You can use the Lines, ProcBodyLine, ProcCountLines, ProcOfLine, and
ProcStartLine properties to get information about a procedure in a module.
Procedures can be one of four types: a Sub or Function procedure, a Property
Get procedure, a Property Let procedure, or a Property Set procedure. Sub
and Function procedures are considered the same type. Most of your
procedures will be of this type. You don't need to be concerned with the last
three unless you're creating properties within class modules.

The ProcBodyLine property returns the number of the line on which the
procedure definition begins; that is, the line that includes a Sub, Function,
Property Get, Property Let, or Property Set statement. The ProcStartLine
property returns the number of the line immediately following the procedure
separator, if you have the Full Module View and Procedure Separator
options set on the Module tab of the Options dialog box (Tools menu). This
line number may or may not be the same as the one returned by the
ProcBodyLine property. Any comments, modulelevel declarations, or empty
lines that precede the procedure definition are considered part of the procedure.
The ProcStartLine property returns the number of the first line of the full
procedure.

The following example uses the ProcCountLines, ProcStartLine,
ProcBodyLine, and Lines properties to print a procedure in a module to the
Debug window.

Function ProcLineInfo(strModuleName As String, strProcName As String)
Dim mdl As Module
Dim lngStartLine As Long, lngBodyLine As Long
Dim lngCount As Long, lngEndProc As Long

On Error GoTo Error_ProcLineInfo
' Open specified Module object.
DoCmd.OpenModule strModuleName
' Return reference to Module object.
Set mdl = Modules(strModuleName)

' Count lines in procedure.
lngCount = mdl.ProcCountLines(strProcName, vbext_pk_Proc)
' Determine start line.
lngStartLine = mdl.ProcStartLine(strProcName, vbext_pk_Proc)

' Determine body line.
lngBodyLine = mdl.ProcBodyLine(strProcName, vbext_pk_Proc)
Debug.Print

' Print all lines in procedure preceding body line.
Debug.Print "Lines preceding procedure " & strProcName & ": "
Debug.Print mdl.Lines(lngStartLine, lngBodyLine - lngStartLin

' Determine line number of last line in procedure.
lngEndProc = (lngBodyLine + lngCount - 1) - Abs(lngBodyLine -

' Print all lines in body of procedure.
Debug.Print "Body lines: "

Microsoft Office 97/Visual Basic Programmer's Guide Page 76 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Debug.Print mdl.Lines(lngBodyLine, (lngEndProc - lngBodyLine)
ProcLineInfo = True

Exit_ProcLineInfo:
Exit Function

Error_ProcLineInfo:
MsgBox Err & " :" & Err.Description
ProcLineInfo = False
Resume Exit_ProcLineInfo

End Function

You can call this function from the Northwind sample database with a procedure
such as the following.

Sub GetProcInfo()
ProcLineInfo "Utility Functions", "IsLoaded"

End Sub

Methods of the Module Object

The following table describes the methods of the Module object.

Adding Text to a Module

If you want to add a string of text to a module, use the InsertLines method.
With this method, you can specify at which line in the procedure you want the
text to be added.

The following example creates a new form, adds a command button, creates a
Click event procedure for the command button, and inserts a line of code with
the InsertLines method.

Function ClickEventProc() As Boolean
Dim frm As Form, ctl As Control, mdl As Module
Dim lngReturn As Long

On Error GoTo Error_ClickEventProc
' Create new form.

Method Description

AddFromFile Adds the contents of a text file to a module.

AddFromString Adds the contents of a string to a module.

CreateEventProc Creates an event procedure within a class
module.

DeleteLines Deletes specified lines from a module.

Find Finds specified text in a module.

InsertLines Inserts a line or group of lines of code at a
specified point in a module.

ReplaceLine Replaces a line in a module with specified text.

Microsoft Office 97/Visual Basic Programmer's Guide Page 77 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Set frm = CreateForm
' Create command button on form.
Set ctl = CreateControl(frm.Name, acCommandButton, , , , 1000
ctl.Caption = "Click here"
' Return reference to form module.
Set mdl = frm.Module
' Add event procedure.
lngReturn = mdl.CreateEventProc("Click", ctl.Name)
' Insert text into body of procedure.
mdl.InsertLines lngReturn + 1, vbTab & "MsgBox ""Way cool!"""
ClickEventProc = True

Exit_ClickEventProc:
Exit Function

Error_ClickEventProc:
MsgBox Err & " :" & Err.Description
ClickEventProc = False
Resume Exit_ClickEventProc

End Function

Creating a New Module

You can create a new module with the RunCommand method of the
Application object. The following example creates a new module and opens it
in Design view. Note that this code may not run in every view.

RunCommand acCmdNewObjectModule

You may want to add a new module with Visual Basic in order to add text from a
file. The following example uses the AddFromFile method to add the contents
of a text file to a new module. The procedure saves the new module with the
same name as the text file.

Function AddFromTextFile(strFileName) As Boolean
Dim strModuleName As String, intPosition As Integer
Dim intLength As Integer
Dim mdl As Module

' Store file name in variable.
strModuleName = strFileName

' Remove directory path from string.
Do

' Find \ character in string.
intPosition = InStr(strModuleName, "\")
If intPosition = 0 Then

Exit Do
Else

intLength = Len(strModuleName)
' Remove path from string.
strModuleName = Right(strModuleName, Abs(intL

End If
Loop

' Remove file extension from string.
intPosition = InStr(strModuleName, ".")
If intPosition > 0 Then

intLength = Len(strModuleName)

Microsoft Office 97/Visual Basic Programmer's Guide Page 78 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

strModuleName = Left(strModuleName, intPosition - 1)
End If

' Create new module.
RunCommand acCmdNewObjectModule
' Save module with name of text file, excluding path and exte
DoCmd.Save , strModuleName
' Return reference to Module object.
Set mdl = Modules(strModuleName)
' Add contents of text file.
mdl.AddFromFile strFileName
' Save module with new text.
DoCmd.Save

End Function

When you run this procedure, avoid stepping through the line that first saves
the module. If you enter break mode by stepping through this line, the module
in which the code is running gets the focus, rather than the module that the
code has just created. Visual Basic then tries to save the module in which the
code is running rather than the new module.

Note that to create a new module with the RunCommand method, the Module
command on the Insert menu must be available.

Class Module Events

Class modules that aren't associated with a form or report have two events: the
Initialize event and the Terminate event. The Initialize event occurs when you
create a custom object in memory from its class definition. The Terminate event
occurs when you remove a custom object from memory.

To create event procedures for the Initialize and Terminate events, open the
class module and click Class in the Object box. Then click Initialize or
Terminate in the Procedure box.

You can use these events to run code when you create a custom object in
memory or remove it from memory. For example, you may want to initialize a
modulelevel variable defined in the class module when you create a custom
object. The following example declares a modulelevel variable. When the
Initialize event procedure runs, Visual Basic assigns the variable a value.

' Declare module-level variable.
Public intX As Integer

Private Sub Class_Initalize()
intX = 10

End Sub

The Reference Object and the References
Collection

The Reference object represents a reference from Microsoft Access to another
project or object library. Reference objects are contained in the References

Microsoft Office 97/Visual Basic Programmer's Guide Page 79 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

collection. Each Reference object in the References collection corresponds to
a reference that is set in the References dialog box (Tools menu).

You can use the Reference object and References collection to add references
with Visual Basic, to check existing references, or to remove references that are
no longer needed.

The following table shows the relationship between the Reference object and
the References collection and other objects in the Microsoft Access object
hierarchy.

Referring to Reference Objects

To work with a Reference object in Visual Basic, you need to refer to the
Reference object in the References collection. You can refer to a Reference
object and assign it to an object variable in any of the following ways:

Dim ref As Reference
Set ref = References!VBA ' Assigns Reference object to a varia
Set ref = References("VBA") ' Assigns Reference object to a varia
Set ref = References(1) ' Returns a reference to the first Re

' in the collection.

Properties of the Reference Object

The following table describes the properties of the Reference object.

Object or collection Is contained by Contains

Reference object References collection None

References collection Application object Reference object

Property Description

BuiltIn Indicates whether a Reference object points
to a default reference that's necessary for
Microsoft Access to function properly.

Collection Returns a reference to the References
collection.

FullPath Returns the path and file name of the
referenced project or object library.

GUID Returns the globally unique identifier (GUID)
for a referenced project or object library. A
GUID is stored in the Windows registry.

IsBroken Indicates whether a Reference object points
to a valid reference.

Kind Indicates whether a Reference object points
to a Visual Basic project or to an object library.

Microsoft Office 97/Visual Basic Programmer's Guide Page 80 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

For more information about each of these properties, search Microsoft Access
Help for the name of the property.

Methods of the References Collection

The following table describes the methods of the References collection.

For more information about each of these methods, search Microsoft Access
Help for "References collection."

Setting a Reference in Visual Basic

You can use the AddFromFile or AddFromGUID method to set a reference in
Visual Basic. The following example creates a reference at run time.

Function AddReference(strFilePath As String) As Boolean
Dim ref As Reference

Const conReferenceExists As Long = 32813

On Error GoTo Error_AddReference
' Add reference to project or object library.
Set ref = References.AddFromFile(strFilePath)
AddReference = True

Exit_AddReference:
Exit Function

Error_AddReference:
If Err <> conReferenceExists Then

MsgBox Err & ": " & Err.Description

Major Returns the value to the left of the decimal
point in the version number of a file to which a
reference has been set.

Minor Returns the value to the right of the decimal
point in the version number of a file to which a
reference has been set.

Name Returns the name of the project or object
library to which a reference has been set.

Method Description

AddFromFile Creates a reference to a file that contains a
project or object library.

AddFromGUID Creates a reference to a project or object
library based on its GUID, which is stored in
the Windows registry.

Item Returns a particular member of the
References collection.

Remove Removes a Reference object from the
References collection.

Microsoft Office 97/Visual Basic Programmer's Guide Page 81 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

End If
AddReference = False
Resume Exit_AddReference

End Function

You can call this function to set a reference to the Developer Solutions sample
application, as shown in the following example.

Sub SetSolutionsReference()
Const strRefPath As String = "C:\Program Files\Microsoft Offi

& "\Office\Samples\Solutions.mdb"

If AddReference(strRefPath) = True Then
MsgBox "Reference set successfully."

Else
MsgBox "Reference not set successfully."

End If
End Sub

The DoCmd Object

You can use the DoCmd object to carry out macro actions in Visual Basic. Macro
actions perform common operations that aren't supported by other objects. For
example, you can use methods of the DoCmd object to open, save, or close
tables, forms, queries, reports, macros, and modules in Visual Basic. You can
also use methods of the DoCmd object to maximize, minimize, or restore a
window. Several of the examples in this chapter demonstrate the uses of the
DoCmd object — for example, the ProcLineInfo procedure in "Properties of the
Module Object" earlier in this chapter.

To see a list of the methods of the DoCmd object, search for "DoCmd" in the
Object Browser. You can also see a list of the methods of the DoCmd object, as
well as get more information on each method, by searching Microsoft Access
Help for "DoCmd object."

The Screen Object

The Screen object refers to the form, report, datasheet, or control that has the
focus. You use the Screen object to work with a particular object on the current
screen. For example, you can use the ActiveForm property of the Screen
object to return a reference to the form in the active window without knowing
the form's name. This is useful when you need to work with the active form but
don't necessarily know which form that will be.

Properties of the Screen Object

The following table describes the properties of the Screen object.

Microsoft Office 97/Visual Basic Programmer's Guide Page 82 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

When you use the Screen object, you may want to implement error handling
because an object other than the one you expect may have the focus when your
code runs. It may be preferable to first use the SetFocus method of a form,
report, or control to set the focus to the object you want, so that you can always
be certain that the correct object has the focus. Also, avoid using the Screen
object with the OutputTo method of the DoCmd object.

Note that the ActiveForm property and the Me property do not necessarily
return a reference to the same form. The Me property represents the form in
which code is currently running. The ActiveForm property returns a reference
to the form that is active on the screen, which may not be the form in which
code is currently running. For example, a Timer event may occur on a form that
is not the active form. You can use the Me property to refer to the form on
which the Timer event is occurring, and the ActiveForm property to refer to the
form that is active on the screen while the Timer event is occurring.

The following example uses a Timer event to requery the active form at regular
intervals. The form on which the Timer event occurs may or may not be the
active form.

Private Sub Form_Load()
Me.TimerInterval = 30000

End Sub

Private Sub Form_Timer()
Const conFormNotActive As Integer = 2475
Const conFormInDesignView As Integer = 2478

On Error GoTo Error_Timer
' Requery record source for active form.
Screen.ActiveForm.Requery

Exit_Timer:
Exit Sub

Property Description

ActiveControl Returns a reference to the control that has the
focus.

ActiveDatasheet Returns a reference to the datasheet that has
the focus.

ActiveForm Returns a reference to the form that has the
focus.

ActiveReport Returns a reference to the report that has the
focus.

Application Returns a reference to the Application object.

MousePointer Sets or returns a value that specifies the type
of mouse pointer currently displayed.

Parent Returns a reference to the object that contains
the Screen object.

PreviousControl Returns a reference to the control that last had
the focus.

Microsoft Office 97/Visual Basic Programmer's Guide Page 83 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Error_Timer:
If Err = conFormNotActive Or Err = conFormInDesignView Then

Resume Exit_Timer
Else

MsgBox Err & ": " & Err.Description
End If

End Sub

Contents
� Working with the Application Object
� Working with the Workbook Object
� Working with the Range Object
� Working with Events

Visual Basic supports a set of objects that correspond directly to elements in
Microsoft Excel, most of which you're familiar with from the user interface. For
example, the Workbook object represents a workbook, the Worksheet object
represents a worksheet, and the Range object represents a range of cells on a
worksheet. Every element in Microsoft Excel — each workbook, worksheet,
chart, cell, and so on — can be represented by an object in Visual Basic. By
creating procedures that control these objects, you automate tasks in Microsoft
Excel. The object model in Microsoft Excel 97 contains extensive changes and
modifications. To view a graphical representation of the Microsoft Excel 97
object model, see "Microsoft Excel Objects" in Help. For a list of changes and
additions, see "Changes to the Microsoft Excel 97 Object Model" in Help.

Microsoft Excel 97 adds support for event-driven programming to Visual Basic.
An event is any action recognized by a Microsoft Excel object. Several objects in
Microsoft Excel recognize a predefined set of events; when you want an object
to respond to an event in a particular way, you can write a Visual Basic event
procedure for that event.

C H A P T E R 4 Microsoft Office 97/Visual Basic Programmer's Guide

Microsoft Excel Objects

How Do I Display Visual Basic Help for Microsoft Excel?

To use Visual Basic Help for Microsoft Excel, you must click Custom
during Setup and select the Online Help for Visual Basic check box for
Microsoft Excel. Otherwise, Visual Basic Help won't be installed. If you've
already installed Microsoft Excel, you can run Setup again to install
Visual Basic Help.

To see the contents and index of Visual Basic Help for Microsoft Excel,
click Contents and Index on the Help menu in the Visual Basic Editor.
On the Contents tab in the Help Topics dialog box, double-click
"Microsoft Excel Visual Basic Reference," and then double-click "Shortcut
to Microsoft Excel Visual Basic Reference." The Help Topics dialog box

Microsoft Office 97/Visual Basic Programmer's Guide Page 84 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Working with the Application Object

Most properties of the Microsoft Excel Application object control the
appearance of the application window or the global behavior of the application.
For example, the value of the DisplayFormulaBar property is True if the
formula bar is visible, and the value of the ScreenUpdating property is False if
screen updating is turned off.

In addition, properties of the Application object provide access to objects lower
in the object hierarchy, such as the Windows collection (representing all
currently open windows) and the Workbooks collection (representing all
currently open workbooks). You use these properties, sometimes called
accessors, to move down the object hierarchy from the toplevel Application
object to objects lower in the hierarchy (such as the Workbook, Worksheet,
and Range objects). For more information about navigating through an object
model, see Chapter 2, "Understanding Object Models."

Some methods and properties that apply to the Application object also apply
to objects lower in the object hierarchy. Using these properties or methods at
the Application level usually changes all open workbooks or sheets. For
example, the Calculate method applies to the Application, Workbook, and
Worksheet objects. Using Application.Calculate recalculates all worksheets
in all open workbooks, whereas using this method on the Workbook or
Worksheet object provides greater control.

Working with the Workbook Object

When you open or save a file in Microsoft Excel, you're actually opening and
saving a workbook. In Visual Basic, the methods for manipulating files are
methods of the Workbook object or the Workbooks collection.

Opening Workbooks

When you open a workbook, you use the Open method. The Open method
always applies to the Workbooks collection, which you return using the
Workbooks property. The following code opens the file Book1.xls (in the
current folder) and then displays the value that's in cell A1 on the first
worksheet in the workbook.

Sub OpenBook1()
Set myBook = Workbooks.Open(Filename:="BOOK1.XLS")
MsgBox myBook.Worksheets(1).Range("A1").Value

End Sub

Notice that the return value of the Open method is a Workbook object that
refers to the workbook that was just opened.

should reappear, displaying the contents and index for Visual Basic Help
for Microsoft Excel.

Microsoft Office 97/Visual Basic Programmer's Guide Page 85 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

The file name in this example doesn't contain a path; therefore, the file is
assumed to be in the current folder. This is guaranteed to cause a runtime
error, because as soon as the user changes the current folder, Visual Basic can
no longer find the file.

There are two relatively safe places to store a workbook you want to open
programmatically. One place is the folder that contains the executable file for
Microsoft Excel. The other place is the Library folder, which is created
automatically during setup; this folder is one level down from the folder that
contains the executable file.

If you want to open a workbook that's saved in the folder that contains the
executable file, you can use the Path property to return a string that specifies
the folder. The PathSeparator property returns the correct separator character
for the current file system (for example, a backslash (\) for MS-
DOS®/Windows® FAT, or a colon (:) for the Macintosh®). The following
example shows filesystemindependent code you can use to open Book1.xls,
assuming that Book1.xls is saved in the folder that contains the executable file.

Sub OpenBook1()
EXEPath = Application.Path & Application.PathSeparator
fName = EXEPath & "BOOK1.XLS"
Set myBook = Workbooks.Open(Filename:=fName)
MsgBox myBook.Worksheets(1).Range("A1").Value

End Sub

The other relatively safe place to store a workbook is in the Library folder. You
can use the LibraryPath property instead of the Path property to return a
string that specifies the Library folder. The following code shows how you would
alter the preceding example to use the LibraryPath property.

Sub OpenBook1()
LibPath = Application.LibraryPath & Application.PathSeparator
fName = LibPath & "BOOK1.XLS"
Set myBook = Workbooks.Open(Filename:=fName)
MsgBox myBook.Worksheets(1).Range("A1").Value

End Sub

Instead of hardcoding a file name with the Open method, you may want to give
the user the option of selecting a file to open. The GetOpenFilename method
displays the standard Open dialog box, but the method returns a string instead
of opening a file. The string contains the fully qualified path and file name. The
following example demonstrates the GetOpenFilename method by displaying
the return value in a message box and then opening the file.

Sub DemoGetOpenFilename()
Do

fName = Application.GetOpenFilename
Loop Until fName <> False
MsgBox "Opening " & fName
Set myBook = Workbooks.Open(Filename:=fName)

End Sub

Microsoft Office 97/Visual Basic Programmer's Guide Page 86 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Creating and Saving Workbooks

You create a new workbook by applying the Add method to the Workbooks
collection. Remember to set the return value of the Add method to an object
variable so that you can refer to the new workbook in your code.

When you save a new workbook for the first time, use the SaveAs method. For
subsequent saves, use the Save method. The GetSaveAsFilename method is
very similar to the GetOpenFilename method, which is described in the
preceding section. The following example shows how to create a new workbook
and then save it using the GetSaveAsFilename method.

Sub CreateAndSave()
Set newBook = Workbooks.Add
Do

fName = Application.GetSaveAsFilename
Loop Until fName <> False
newBook.SaveAs Filename:=fName

End Sub

Closing Workbooks

To close a workbook, use the Close method of the Workbook object. You can
close a workbook without saving changes, as shown in the following example.

Sub OpenChangeClose()
Do

fName = Application.GetOpenFilename
Loop Until fName <> False
Set myBook = Workbooks.Open(Filename:=fName)
' Make some changes to myBook
myBook.Close savechanges:=False

End Sub

This code uses the GetOpenFilename method to select the workbook to open,
makes some changes to the workbook (indicated by the comments), and then
closes the workbook without saving the changes.

Working with the Range Object

The Range object can represent a single cell, a range of cells, an entire row or
column, a selection containing multiple areas, or a 3D range. The Range object
is somewhat unusual in that it can represent both a single cell and multiple
cells. There's no separate collection object for the Range object; you can think
of it as being either a single object or a collection, depending on the situation.
There are many different properties and methods that return a Range object,
as shown in the following list.

Microsoft Office 97/Visual Basic Programmer's Guide Page 87 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

For more information about these properties and methods, see the individual
property and method topics in Help.

Using an A1Style String Reference or Range Name

One of the most common ways to return a Range object is to use an A1style
reference or the name of a range, as shown in the following table.

Remember that expressions such as Range("C1:E3").Value = 6 assume that
the Range property operates on the active sheet. If you try to run this code
with a chart sheet active, a runtime error occurs (error 1004, "Range method of

ActiveCell

BottomRightCell

Cells

ChangingCells

CircularReference

Columns

CurrentArray

CurrentRegion

Dependents

DirectDependents

DirectPrecedents

EntireColumn

EntireRow

Next

Offset

PageRange

Precedents

Range

RowFields

RowRange

Rows

Selection

TableRange1

TableRange2

TopLeftCell

UsedRange

VisibleRange

To do this Use the following code

Set the value of cell A1 on
Sheet1

Worksheets("Sheet1").Range("A1").Value =
3

Set the formula for cell B1 on
the active sheet

Range("B1").Formula = "=5-10*RAND()"

Set the value of each cell in the
range C1:E3 on the active sheet

Range("C1:E3").Value = 6

Clear the contents of the range
A1:E3 on the active sheet

Range("A1", "E3").ClearContents

Set the font style for the range
named "myRange" (a workbook-
level name) to bold

Range("myRange").Font.Bold = True

Set the value of each cell in the
range named "yourRange" (a
sheet-level name)

Range("Sheet1!yourRange").Value = 3

Set an object variable to refer to
a range

Set objRange = Range("myRange")

Microsoft Office 97/Visual Basic Programmer's Guide Page 88 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Application class failed").

Another cause of errors is the use of the Range property in an argument to
another method, without fully qualifying the Worksheet object to which the
Range property applies. The following example, which is supposed to sort a
range of cells on Sheet1, also causes runtime error 1004.

Sub SortRange()
Worksheets("Sheet1").Range("A1:B10").Sort _

key1:=Range("A1"), order1:=xlDescending
End Sub

This error is more difficult to find, because the line that contains the Sort
method is correct. The error is caused by the second line, which contains the
Key1 argument. This code will run correctly if Sheet1 is the active sheet, but it
will fail when it's run from another worksheet or from a module. To avoid the
error, use the Worksheets property in the argument.

Sub SortRange()
Worksheets("Sheet1").Range("A1:B10").Sort _

key1:=Worksheets("Sheet1").Range("A1"), order1:=xlDes
End Sub

Using Numeric Row and Column Indexes

You can also return a specific cell by specifying its row and column numbers, or
indexes. You specify the row index first, followed by the column index, as shown
in the following table.

Numeric row and column indexes are useful when you want to refer to cells by
using loop counters. For example, the following code loops through cells A1:D10
on Sheet1. If any of the cells has a value less than 0.01, the example replaces
the value with 0 (zero).

Sub RoundToZero()
For rwIndex = 1 to 4

For colIndex = 1 to 10
If Worksheets("Sheet1").Cells(rwIndex, colInd

Worksheets("Sheet1").Cells(rwIndex, c
End If

Next colIndex
Next rwIndex

End Sub

To do this Use the following code

Set the value of cell A1 on
Sheet1

Worksheets("Sheet1").Cells(1, 1).Value =
3

Set the formula for cell B1 on
the active sheet

Cells(1, 2).Formula = "=5-10*RAND()"

Set an object variable Set objRange = Worksheets
("Sheet1").Cells(1, 1)

Microsoft Office 97/Visual Basic Programmer's Guide Page 89 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

The following example shows a quick and easy way to display items in a
multiplecolumn list. The code creates a new worksheet and sets the object
variable newSheet to refer to the worksheet. The code then creates a list of all
the names in the active workbook and displays their formulas in A1style
notation.

Sub ListNames()
Set newSheet = Worksheets.Add
i = 1
For Each nm In ActiveWorkbook.Names

newSheet.Cells(i, 1).Value = nm.Name
newSheet.Cells(i, 2).Value = "'" & nm.RefersTo
i = i + 1

Next nm
newSheet.Columns("A:B").AutoFit

End Sub

Using the Offset Property

You often need to return a range of cells that's a certain number of rows or
columns away from another range of cells. The Offset property applies to a
Range object, takes a RowOffset argument and a ColumnOffset argument, and
returns a new range. The following example determines the type of data in each
cell in the range A1:A10. The code writes the data types in the column to the
right of the input cells.

Sub ScanColumn()
For Each c In Worksheets("Sheet1").Range("A1:A10").Cells

If Application.IsText(c.Value) Then
c.Offset(0, 1).Formula = "Text"

ElseIf Application.IsNumber(c.Value) Then
c.Offset(0, 1).Formula = "Number"

ElseIf Application.IsLogical(c.Value) Then
c.Offset(0, 1).Formula = "Boolean"

ElseIf Application.IsError(c.Value) Then
c.Offset(0, 1).Formula = "Error"

ElseIf c.Value = "" Then
c.Offset(0, 1).Formula = "(blank cell)"

End If
Next c

End Sub

Using the CurrentRegion and UsedRange Properties

These two properties are very useful when your code operates on ranges whose
size you have no control over. The current region is a range of cells bounded by
empty rows and empty columns, or by a combination of empty rows, empty
columns, and the edges of the worksheet.

The CurrentRegion property applies to a Range object. There can be many
different current regions on a worksheet, depending on the Range object to
which you apply the CurrentRegion property.

Suppose that Sheet1 contains a list to which you want to apply a number

Microsoft Office 97/Visual Basic Programmer's Guide Page 90 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

format. The only thing you know about the list is that it begins at cell A1; you
don't know how many rows or columns it contains. The following example shows
how to format the list by using the CurrentRegion property.

Sub FormatRange()
Set myRange = Worksheets("Sheet1").Range("A1").CurrentRegion
myRange.NumberFormat = "0.0"

End Sub

The used range is bounded by the farthest upperleft and farthest lowerright
nonempty cells on a worksheet. It's a range that contains every nonempty cell
on the worksheet, as well as all the empty cells that are interspersed among
them. There can be only one used range on a worksheet; the UsedRange
property applies to a Worksheet object, not to a Range object.

Suppose that the active worksheet contains data from a timed experiment. The
used range contains the dates in the first column, the times in the second
column, and the measurements in the third and fourth columns. You want to
write code that combines each separate date and time into a single value,
converts that value from Greenwich Mean Time (GMT) to Pacific Standard Time
(PST), and then applies a date format to the value. The data table can contain
empty rows and columns. You can use the UsedRange property to return the
entire used range, including any embedded blank rows. The following example
shows one way to convert and format the dates and times.

Sub ConvertDates()
Set myRange = ActiveSheet.UsedRange
myRange.Columns("C").Insert
Set dateCol = myRange.Columns("C")
For Each c In dateCol.Cells

If c.Offset(0, -1).Value <> "" Then
c.FormulaR1C1 = "=RC[-2]+RC[-1]-(8/24)"

End If
Next c
dateCol.NumberFormat = "mmm-dd-yyyy hh:mm"
dateCol.Copy
dateCol.PasteSpecial Paste:=xlValues
myRange.Columns("A:B").Delete
dateCol.AutoFit

End Sub

Notice that the code uses the expression ActiveSheet.UsedRange.Columns
("C") to return the third column from the used range (although this is the third
column in the used range, it can appear in any column on the worksheet — that
is, the used range can be preceded by empty columns). You can use other
Range object properties and methods in a similar way to build complex
expressions that return subranges or superranges of a Range object. Some
properties and methods commonly used in this way are Areas, Cells,
Columns, EntireColumn, EntireRow, Range, and Rows.

Looping on a Range of Cells

There are several different ways to loop on the cells in a range. The examples in
this section show the For Each...Next statement and the Do...Loop statement
applied to looping on a range of cells.

Microsoft Office 97/Visual Basic Programmer's Guide Page 91 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Using For Each...Next

The recommended way to loop on the cells in a range is to use the
For Each...Next loop, which is also the recommended way to loop on the
elements in a collection.

The following example shows how to loop through the range A1:D10 on Sheet1,
setting any number whose absolute value is less than 0.01 to 0 (zero).

Sub RoundToZero()
For Each r In Worksheets("Sheet1").Range("A1:D10").Cells

If Abs(r.Value) < 0.01 Then
r.Value = 0

End If
Next r

End Sub

Suppose that you want to modify this code to loop over a range of cells that a
user selects. One way of doing this is to use the InputBox method to prompt
the user to select a range of cells. The InputBox method returns a Range
object that represents the selection. By using the Type argument and error
handling, you can ensure that the user selects a valid range of cells before the
input box is dismissed.

Sub RoundToZero()
Worksheets("Sheet1").Activate
On Error GoTo PressedCancel
Set r = Application.InputBox(_

prompt:="Select a range of cells", _
Type:=8)

On Error GoTo 0
For Each c In r.Cells

If Abs(c.Value) < 0.01 Then
c.Value = 0

End If
Next c
Exit Sub

PressedCancel:
Resume

End Sub

If you don't want the user to select the range, you may be able to use the
CurrentRegion property or the UsedRange property to return a Range object.
For example, if you know that the data on Sheet1 begins at cell A1 and includes
no empty rows or columns, you can use the CurrentRegion property to return
the entire range automatically.

Sub RoundToZero()
Set r = Worksheets("Sheet1").Range("A1").CurrentRegion
For Each c In r.Cells

If Abs(c.Value) < 0.01 Then
c.Value = 0

End If
Next c

End Sub

Microsoft Office 97/Visual Basic Programmer's Guide Page 92 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

The following two examples show two different ways to hide every other column
in the used range on Sheet1. The first example shows a For Each...Next loop
in which the Column property of the object variable is tested.

Sub HideColumns()
Set r = Worksheets("Sheet1").UsedRange
For Each col In r.Columns

If col.Column Mod 2 = 0 Then
col.Hidden = True

End If
Next col

End Sub

The second example shows a For...Next loop that tests the loop counter.

Sub HideColumns()
Set r = Worksheets("Sheet1").UsedRange
For i = 1 To r.Columns.Count

If i Mod 2 = 0 Then
r.Columns(i).Hidden = True

End If
Next i

End Sub

Using Do...Loop

Occasionally, the For Each...Next loop isn't the best way to loop on a range.
Suppose that you have a column of data and you want to write a macro that
sorts the data and then deletes rows that contain duplicate data. You could try
to use a For Each...Next loop, as shown in the following example.

Sub BuggyRemoveDuplicates() ' DON'T USE THIS CODE!
Worksheets("Sheet1").Range("A1").Sort _

key1:=Worksheets("Sheet1").Range("A1")
Set r = Worksheets("Sheet1").Range("A1").CurrentRegion.Column
For Each c In r.Cells

If c.Offset(1, 0).Value = c.Value Then
c.Offset(1, 0).EntireRow.Delete

End If
Next c

End Sub

Unfortunately, this code doesn't work correctly because the Delete method is
modifying the range on which For Each...Next is looping. This causes
duplicates not to be deleted in some cases.

A better solution is to use a Do...Loop structure, as shown in the following
example.

Sub GoodRemoveDuplicates()
Worksheets("Sheet1").Range("A1").Sort _

key1:=Worksheets("Sheet1").Range("A1")
Set currentCell = Worksheets("Sheet1").Range("A1")
Do While Not IsEmpty(currentCell)

Microsoft Office 97/Visual Basic Programmer's Guide Page 93 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Set nextCell = currentCell.Offset(1, 0)
If nextCell.Value = currentCell.Value Then

currentCell.EntireRow.Delete
End If
Set currentCell = nextCell

Loop
End Sub

The loop tests the object variable currentCell, exiting when it encounters an
empty cell at the bottom of the column of data. You could build an equivalent
loop by testing the value in currentCell against an empty string, as shown in
the following example.

Do While currentCell.Value <> ""
' Code to run on cells with values

Loop

In either case, don't forget to increment the cell at the bottom of the Do...Loop
structure (Set currentCell = nextCell, for example).

Using the Address Property to Debug Range Object
Code

You can apply the Address property to any Range object. The Address
property returns the cell address of a range, as a string. The following example
shows how to use the Address property to debug the HideColumns procedure.

Sub HideColumns()
Set r = Worksheets("Sheet1").UsedRange
MsgBox r.Address ' debugging only!
For i = 1 To r.Columns.Count

If i Mod 2 = 0 Then
r.Columns(i).Hidden = True
MsgBox r.Columns(i).Address ' debugging only

End If
Next i

End Sub

You can also set watch expressions instead of using message boxes. For the
preceding example, you could set two watch expressions — r.Address and
r.Columns(i).Address — and then examine the values of the watch
expressions in the Immediate window. For more information about debugging,
see Chapter 14, "Debugging and Error Handling."

Working with Events

If you've used Visual Basic (Standard, Professional, or Enterprise Edition),
you're familiar with eventdriven programming; most of your Visual Basic code
was probably written to respond to events, such as when the user clicks a
button or when a form is loaded. In Microsoft Excel, you may have used
properties such as OnSheetActivate or OnEntry to cause a macro to run when
a sheet is activated or changed. This is also eventdriven programming. Microsoft
Excel 97 expands the available list of events and adds event procedures that

Microsoft Office 97/Visual Basic Programmer's Guide Page 94 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

receive arguments.

With Microsoft Excel 97, you can write event procedures at the worksheet,
chart, workbook, or application level. For example, the Activate event occurs at
the sheet level, and the SheetActivate event is available at both the workbook
and application levels. The SheetActivate event for a workbook occurs when any
sheet in that workbook is activated. At the application level, the SheetActivate
event occurs when any sheet in any open workbook is activated.

Worksheet and workbook event procedures are created by default for any open
worksheet, chart sheet, or workbook. To write event procedures for an
embedded chart or for the application, you must create a new object using the
WithEvents keyword in a class module. You can also use a class module to
create event procedures that can be used for more than one worksheet or
workbook. For more information , see "Using Class Modules with Events" later in
this chapter.

Enabling or Disabling Events

Use the EnableEvents property to enable or disable events. For example, using
the Save method to save a workbook causes the BeforeSave event to occur.
You can prevent this by setting the EnableEvents property to False before you
call the Save method, as in the following example.

Application. = False
ActiveWorkbook.Save
Application. = True

Using Events on Sheets

Events on sheets are enabled by default. To view the event procedures for a
particular sheet, use either of the following techniques:

� Rightclick the sheet tab, and then click View Code on the shortcut menu.
In the Procedure box, click the event name.

� On the Tools menu, point to Macro and then click Visual Basic Editor.
Select the sheet in the Project Explorer, and then either click the View
Code button or click Code on the View menu. In the Object box, click
either Worksheet or Chart, and then click the event name in the
Procedure box.

Worksheet Events

Worksheetlevel events occur when the user activates a worksheet or changes a
worksheet cell, as shown in the following table.

Microsoft Office 97/Visual Basic Programmer's Guide Page 95 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

For more information about an event, see the corresponding Help topic.

Examples

The following example adjusts the size of columns A through F whenever the
worksheet is recalculated.

Private Sub Worksheet_Calculate()
Columns("A:F").AutoFit

End Sub

Some events can be used to substitute an action for the default application
behavior, or to make a small change to the default behavior. The following
example traps the rightclick event and adds a new menu item to the shortcut
menu for cells B1:B10.

Private Sub Worksheet_BeforeRightClick(ByVal Target As Range, _
 Cancel As Boolean)
 For Each icbc In Application.CommandBars("cell").Controls
 If icbc.Tag = "brccm" Then icbc.Delete
 Next icbc
 If Not Application.Intersect(Target, Range("b1:b10")) Is Nothing
 With Application.CommandBars("cell").Controls _
 .Add(Type:=msoControlButton, before:=6, _
 temporary:=True)
 .Caption = "New Context Menu Item"
 .OnAction = "MyMacro"

Event Description

Activate Occurs when the user activates the sheet. Use
this event instead of the OnSheetActivate
property.

BeforeDoubleClick Occurs when the user double-clicks a
worksheet cell. Use this event instead of the
OnDoubleClick property.

BeforeRightClick Occurs when the user right-clicks a worksheet
cell.

Calculate Occurs when the user recalculates the
worksheet. Use this event instead of the
OnCalculate property.

Change Occurs when the user changes a cell formula.
Use this event instead of the OnEntry
property.

Deactivate Occurs when the sheet is active and the user
activates a different sheet. Doesn't occur when
the user shifts the focus from one window to
another window showing the same sheet. Use
this event instead of the OnSheetDeactivate
property.

SelectionChange Occurs when the user selects a worksheet cell.

Microsoft Office 97/Visual Basic Programmer's Guide Page 96 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

 .Tag = "brccm"
 End With
 End If
End Sub

Chart Events

Like worksheetlevel events, chartlevel events occur when the user activates or
changes a chart, as shown in the following table.

For more information about an event, see the corresponding Help topic.

Events for chart sheets are available by default in the Visual Basic Editor. To

Event Description

Activate Occurs when the user activates the chart sheet
(doesn't work with embedded charts). Use this
event instead of the OnSheetActivate
property.

BeforeDoubleClick Occurs when the user double-clicks the chart.
Use this event instead of the OnDoubleClick
property.

BeforeRightClick Occurs when the user right-clicks the chart.

Calculate Occurs when the user plots new or changed
data on the chart.

Deactivate Occurs when the sheet is active and the user
activates a different sheet. Doesn't occur when
the user shifts the focus from one window to
another window showing the same sheet. Use
this event instead of the OnSheetDeactivate
property.

DragOver Occurs when the user drags data over the
chart.

DragPlot Occurs when the user drags a range of cells
over the chart.

MouseDown Occurs when the user clicks a mouse button
while the pointer is positioned over the chart.

MouseMove Occurs when the user moves the pointer over
the chart.

MouseUp Occurs when the user releases a mouse button
while the pointer is positioned over the chart.

Resize Occurs when the user changes the size of the
chart.

Select Occurs when the user selects a chart element.

SeriesChange Occurs when the user changes the value of a
chart data point.

Microsoft Office 97/Visual Basic Programmer's Guide Page 97 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

write event procedures for an embedded chart, you must create a new object
using the WithEvents keyword in a class module. For more information, see
"Using Class Modules with Events" later in this chapter.

Example

The following example changes a point's border color when the user changes
the point's value.

Private Sub Chart_SeriesChange(ByVal SeriesIndex As Long, _
ByVal PointIndex As Long)

 Set p = ActiveChart.SeriesCollection(SeriesIndex).Points(PointInd
 p.Border.ColorIndex = 3
End Sub

Workbook Events

Workbook events occur when the user changes a workbook or any sheet in the
workbook.

Event Description

Activate Occurs when the user activates the workbook.

AddInInstall Occurs when the user installs the workbook as
an addin. Use this event instead of the
Auto_Add macro.

AddInUninstall Occurs when the user uninstalls the workbook
as an add-in. Use this event instead of the
Auto_Remove macro.

BeforeClose Occurs before the workbook closes. Use this
event instead of the Auto_Close macro.

BeforePrint Occurs before the workbook is printed.

BeforeSave Occurs before the workbook is saved. Use this
event instead of the OnSave property.

Deactivate Occurs when the workbook is active and the
user activates a different workbook.

NewSheet Occurs after the user creates a new sheet.

Open Occurs when the user opens the workbook. Use
this event instead of the Auto_Open macro.

SheetActivate Occurs when the user activates a sheet in the
workbook. Use this event instead of the
OnSheetActivate property.

SheetBeforeDoubleClick Occurs when the user double-clicks a
worksheet cell (not used with chart sheets).
Use this event instead of the OnDoubleClick
property.

Microsoft Office 97/Visual Basic Programmer's Guide Page 98 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

For more information about an event, see the corresponding Help topic.

Example

The following example maximizes the Microsoft Excel application window when
the workbook is opened.

Sub Workbook_Open()
Application.WindowState = xlMaximized

End Sub

Application Events

Application events occur when the user creates or opens a workbook or when
the user changes any sheet in any open workbook.

SheetBeforeRightClick Occurs when the user right-clicks a cell on a
worksheet (not used with chart sheets).

SheetCalculate Occurs after the user recalculates a worksheet
(not used with chart sheets). Use this event
instead of the OnCalculate property.

SheetChange Occurs when the user changes a cell formula
(not used with chart sheets). Use this event
instead of the OnEntry property.

SheetDeactivate Occurs when the user activates a different
sheet in the workbook. Use this event instead
of the OnSheetDeactivate property.

SheetSelectionChange Occurs when the user changes the selection on
a worksheet (not used with chart sheets).

WindowActivate Occurs when the user shifts the focus to any
window showing the workbook. Use this event
instead of the OnWindow property.

WindowDeactivate Occurs when the user shifts the focus away
from any window showing the workbook. Use
this event instead of the OnWindow property.

WindowResize Occurs when the user opens, resizes,
maximizes, or minimizes any window showing
the workbook.

Event Description

NewWorkbook Occurs when the user creates a new workbook.

SheetActivate Occurs when the user activates a sheet in an
open workbook. Use this event instead of the
OnSheetActivate property.

Microsoft Office 97/Visual Basic Programmer's Guide Page 99 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

For more information about an event, see the corresponding Help topic.

Using Class Modules with Events

SheetBeforeDoubleClick Occurs when the user double-clicks a
worksheet cell in an open workbook (not used
with chart sheets). Use this event instead of
the OnDoubleClick property.

SheetBeforeRightClick Occurs when the user right-clicks a worksheet
cell in an open workbook (not used with chart
sheets).

SheetCalculate Occurs after the user recalculates a worksheet
in an open workbook (not used with chart
sheets). Use this event instead of the
OnCalculate property.

SheetChange Occurs when the user changes a cell formula in
an open workbook (not used with chart
sheets). Use this event instead of the OnEntry
property.

SheetDeactivate Occurs when the user deactivates a sheet in an
open workbook. Use this event instead of the
OnSheetDeactivate property.

SheetSelectionChange Occurs when the user changes the selection on
a sheet in an open workbook.

WindowActivate Occurs when the user shifts the focus to an
open window. Use this event instead of the
OnWindow property.

WindowDeactivate Occurs when the user shifts the focus away
from an open window. Use this event instead of
the OnWindow property.

WindowResize Occurs when the user resizes an open window.

WorkbookActivate Occurs when the user shifts the focus to an
open workbook.

WorkbookAddInInstall Occurs when the user installs a workbook as an
add-in.

WorkbookAddInUninstall Occurs when the user uninstalls a workbook as
an add-in.

WorkbookBeforeClose Occurs before an open workbook is closed.

WorkbookBeforePrint Occurs before an open workbook is printed.

WorkbookBeforeSave Occurs before an open workbook is saved.

WorkbookDeactivate Occurs when the user shifts the focus away
from an open workbook.

WorkbookNewSheet Occurs when the user adds a new sheet to an
open workbook.

WorkbookOpen Occurs when the user opens a workbook.

Microsoft Office 97/Visual Basic Programmer's Guide Page 100 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Unlike sheet events, embedded charts and the Application object don't have
events enabled by default. Before you can use events with an embedded chart
or with the Application object, you must create a new class module and
declare an object of type Chart or Application with events. You use the Class
Module command (Insert menu) in the Visual Basic Editor to create a new
class module.

To enable the events of the Application object, you'd add the following
declaration to the class module.

Public WithEvents App As Application

After the new object has been declared with events, it appears in the Object
box in the class module, and you can write event procedures for the new object.
(When you select the new object in the Object box, the valid events for that
object are listed in the Procedure box.)

Before the procedures will run, however, you must connect the declared object
in the class module to the Application object. You can do this from any module
by using the following declaration (where "EventClass" is the name of the class
module you created to enable events).

Public X As New EventClass

After you've created the X object variable (an instance of the EventClass class),
you can set the App object of the EventClass class equal to the Microsoft Excel
Application object.

Sub InitializeApp()
Set X.App = Application

End Sub

After you run the InitializeApp procedure, the App object in the EventClass class
module points to the Microsoft Excel Application object, and the event
procedures in the class module will run whenever the events occur.

Although this may seem like a lot of work, one advantage is that you can use
the same event procedure for many objects. For example, suppose that you
declare an object of type Chart with events in a class module, as follows.

Public WithEvents cht As Chart

You can then use the following code to cause the event procedures to run
whenever an event occurs for either chart one or chart two.

Dim C1 As New EventClass
Dim C2 As New EventClass

Sub InitializeCharts
Set C1.cht = Worksheets(1).ChartObjects(1).Chart
Set C2.cht = Worksheets(1).ChartObjects(2).Chart

Microsoft Office 97/Visual Basic Programmer's Guide Page 101 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

End Sub

You can declare Worksheet or Workbook objects with events in a class
module and use the events in the new class with several sheets, in addition to
the default event procedures. You might use this technique to write an Activate
event handler that runs only when either sheet one or sheet five is activated. Or
you can use a Chart object declared in a class module to write an event handler
for both embedded charts and chart sheets.

Contents
� The Outlook Object Model
� Working with Outlook Folders
� Working with Outlook Items and Events
� Using Automation and VBScript

Microsoft Outlook 97, the desktop information management program included in
Microsoft Office 97, is fully programmable and can be automated to build useful
group software and mailenabled applications. Although Outlook doesn't contain
Visual Basic for Applications version 5.0, it does include a complete type library
and Visual Basic Scripting Edition (VBScript). Using the Outlook type library and
VBScript, you can write procedures that respond to specific events — such as
opening or replying to a mail message or clicking a control on a form — and
store those procedures in a custom form. Using the type library and Visual Basic
in Microsoft Access, Microsoft Excel, Microsoft Word, or Microsoft PowerPoint,
you can control an entire Outlook session by using Automation (formerly OLE
Automation).

This chapter provides a general overview of the objects exposed by the Outlook
type library, and then it focuses on techniques for handling Outlook folders and
items programmatically. Finally, the chapter compares Automation and VBScript
and discusses the restrictions and guidelines for using each one.

Note This chapter doesn't discuss designing and distributing custom Outlook
solutions. For information about developing Outlook solutions, see Building
Microsoft Outlook 97 Applications by Peter Krebs, available from Microsoft Press
(ISBN 1-57231-5736-9).

C H A P T E R 5 Microsoft Office 97/Visual Basic Programmer's Guide

Microsoft Outlook Objects

How Do I Display Visual Basic Help for Outlook?

Visual Basic Help for Outlook isn't installed during setup; instead, you
must copy the files Vbaoutl.hlp and Vbaoutl.cnt from the ValuPack folder
to the folder in which you've installed Outlook. For more information
about installing and using Visual Basic Help for Outlook, see "Getting
Help for Visual Basic in Microsoft Outlook" in Outlook Help.

Microsoft Office 97/Visual Basic Programmer's Guide Page 102 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

The Outlook Object Model

In the Outlook object model, the Application object contains the NameSpace
object, which contains MAPIFolder objects that represent all the available
folders in a given data source (for example, a MAPI message store). The
MAPIFolder objects contain objects that represent all the Outlook items in the
data source, and each item contains some useful programmable objects for
controlling that item. In addition, there's an Explorer object associated with
each folder and an Inspector object associated with each item.

For a visual representation of the Outlook object model, see "Microsoft Outlook
Objects" in Help.

Application Object

The Application object is the root object of the object model; it gives you easy
access to all the other objects in the model. It gives you direct access to new
items you create by using CreateItem, without having to traverse the object
model, and it gives you access to the objects that represent the Outlook
interface (the Explorer and Inspector objects). The Application object is the
only Outlook object you can return by using the CreateObject or GetObject
function in another application.

NameSpace Object

The NameSpace object can represent any recognized data source, such as a
MAPI message store. The object itself provides methods for logging in and out,
returning objects directly by ID, returning default folders directly, and gaining
access to data sources owned by other users.

Note MAPI message stores, which are returned by the expression
GetNameSpace("MAPI"), are the only data sources currently supported by
Microsoft Outlook.

Folders Collection and MAPIFolder Object

The Folders collection contains all the MAPIFolder objects in the specified
message store (or other recognized data source) or in a folder in that message
store. For more information about using the objects that represent Outlook
folders, see "Working with Outlook Folders" later in this chapter.

To see the table of contents and index for Visual Basic Help for Outlook,
you must display the Script Editor window while an Outlook item is open
in design mode. To design an Outlook item, open any item except a note,
and then click Design Outlook Form on the Tools menu. In design
mode, click View Code on the Form menu to display the Script Editor.
In the Script Editor, click Microsoft Outlook Object Library Help on
the Help menu. The Help Topics dialog box should appear, displaying
the table contents and index for Visual Basic Help for Outlook.

Microsoft Office 97/Visual Basic Programmer's Guide Page 103 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Items Collection

The Items collection contains all the Outlook items in the specified folder.
Items and controls on items are the only objects in Outlook that support
programmable events. For information about using the objects that represent
Outlook items (such as MailItem and AppointmentItem) and the objects
contained in Outlook items (such as Attachments and Recipients), as well as
the events they support, see the following section, "Working with Outlook Items
and Events."

Explorer and Inspector Objects

The Explorer object represents the window in which the contents of a folder are
displayed. The Inspector object represents the window in which an Outlook
item is displayed.

For information about using the Explorer and Inspector objects, see "Using
Automation and VBScript" later in this chapter.

Working with Outlook Folders

Just as you can use Outlook to explore the contents of any folder in your
message store, you can automate Outlook to add folders or items to folders or
to move and copy items and folders among folders in your message store.

To return the Folders collection from a NameSpace object or another
MAPIFolder object, use the Folders property. To return a single MAPIFolder
object, use Folders(index), where index is the folder's name or index number.

Note Folder names are casesensitive.

The following Automation example returns the folder named "Urgent" from the
message store for Shannon Boyd. This example assumes that Shannon Boyd is
currently logged on in Outlook.

Set olMAPI = GetObject("","Outlook.Application").GetNameSpace("MAPI")
Set urgentFolder = olMAPI.Folders("Mailbox - Shannon Boyd").Folders("

Certain folders within an Outlook message store support the default
functionality of Outlook and are created the first time Outlook is run. Each folder
contains Outlook items of the same type. The following table describes these
default folders.

Default folder Description

Calendar Default container for AppointmentItem
objects.

Contacts Default container for ContactItem objects.

Microsoft Office 97/Visual Basic Programmer's Guide Page 104 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

You can quickly return a default folder by using the GetDefaultFolders method
with the appropriate OlDefaultFolders constant. The following VBScript
example returns the Inbox folder for the user who's currently logged on to
Outlook.

Set olMAPI = Application.GetNameSpace("MAPI")
Set curInbox= olMAPI.GetDefaultFolder(6)

One of the most useful features of Outlook is delegation, where one user
delegates access to another user for one or more of their default folders. Most
often, this will be a shared Calendar folder through which members of a group
will coordinate their individual schedules with a joint schedule or even a master
schedule for the group as a whole. To return a MAPIFolder object that
represents a shared default folder for a specific user, use the
GetSharedDefaultFolder method. The following Automation example returns
Kim Buhler's shared Calendar folder.

Set olMAPI = GetObject("","Outlook.Application").GetNameSpace("MAPI")
Set myRecipient = olMAPI.CreateRecipient("Kim Buhler")
myRecipient.Resolve
If myRecipient.Resolved Then
 Set schedKim = olMAPI.GetSharedDefaultFolder(myRecipient, _
 olFolderCalendar)
End If

You can set folders in the Outlook message store to contain only certain types of
objects. For example, you can have the Calendar folder contain only
AppointmentItem objects and have the Contacts folder contain only
ContactItem objects.

Note When items of a specific type are saved, they're saved directly into their
corresponding default folder. For example, when the GetAssociatedAppointment
method is applied to a MeetingRequestItem object in the Inbox folder, the
AppointmentItem object that's returned will be saved to the default Calendar

Deleted Items Storage area into which all item objects are
moved when they're marked for deletion. The
application has options to retain such items
indefinitely, archive them after a userdefined
period of time or purge them when the
application is closed.

Inbox Default container for MailItem objects.

Journal Default container for JournalItem objects.

Notes Default container for NoteItem objects.

Outbox Storage area for items that are completed but
not sent.

Sent Mail Storage area into which copies of user-
generated MailItem objects are moved when
they're sent.

Tasks Default container for TaskItem objects.

Microsoft Office 97/Visual Basic Programmer's Guide Page 105 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

folder.

To add a folder to the Folders collection, use the Add method. The Add
method has an optional argument you can use to specify the type of items that
can be stored in that folder. By default, a folder created inside another folder
inherits the parent folder's type. The following VBScript example adds a new
folder named "Caterers" to the current (default) Contacts folder.

Set olMAPI = Application.GetNameSpace("MAPI")
Set myContacts = olMAPI.GetDefaultFolder(10)
Set caterers = myContacts.Folders.Add("Caterers")

If you've used the ActiveExplorer property to return the Explorer object that
represents the currently displayed folder in an Outlook session, you can use the
CurrentFolder property to return the corresponding MAPIFolder object, as
shown in the following Automation example.

Set olApp = GetObject("","Outlook.Application")
Set currFldr = olApp.ActiveExplorer.CurrentFolder

To return an Explorer object associated with a given MAPIFolder object, use
the GetExplorer method.

Working with Outlook Items and Events

Outlook items are represented by the fundamental objects in the Outlook object
model. These objects represent mail messages, appointments or meetings,
meeting requests, tasks, task requests, contacts, journal entries, posts, mail
delivery reports, remote mail items, and notes. The following table describes the
objects that represent Outlook items.

Object Description

AppointmentItem Represents an appointment in the Calendar
folder. An AppointmentItem object can
represent either a one-time or recurring
meeting or appointment. An appointment
becomes a meeting when the MeetingStatus
property is set to olMeeting and one or more
resources (either personnel, in the form of
required or optional attendees, or physical
resources, such as a conference room) are
designated. These actions result in the creation
of a MeetingRequestItem object.

ContactItem Represents a contact in a Contacts folder. A
contact can represent any person with whom
you have any personal or professional contact.

JournalItem Represents a journal entry in a Journal folder.
A journal entry represents a record of all
Outlook-moderated transactions for any given
period of time.

Microsoft Office 97/Visual Basic Programmer's Guide Page 106 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

MailItem Represents a mail message in the Inbox folder
or another mail folder. The MailItem object is
the default item object and, to some extent,
the basic element of Outlook. In addition to the
MailItem object, Outlook also has a parallel
PostItem object that has all of the
characteristics of the mail message, differing
only in that it's posted (written directly to a
folder) rather than sent (mailed to a recipient),
and it has two subordinate objects —
RemoteItem and ReportItem objects — that
are subsets of the mail message used to handle
remote mail items and mail transport system
reports, respectively.

MeetingRequestItem Represents a change to the recipient's Calendar
folder, initiated either by another party or as a
result of a group action. Unlike with other
Outlook objects, you cannot create a
MeetingRequestItem object or find an
existing one in the Items collection. This
object is created automatically when you set
the MeetingStatus property of an
AppointmentItem object to olMeeting and
send it to one or more users.

To return the AppointmentItem object
associated with a MeetingRequestItem
object and work directly with the
AppointmentItem object to respond to the
request, use the GetAssociatedAppointment
method.

NoteItem Represents a note (an annotation attached to a
document) in a Notes folder.

PostItem Represents a post in a public folder that other
users can browse. This object is similar to the
MailItem object, differing only in that it's
posted (saved) directly to the target public
folder, not sent (mailed) to a recipient. You use
the Post method, which is analogous to the
Send method for the MailItem object, to save
the post to the target public folder instead of
mailing it.

RemoteItem Represents a remote item in the Inbox folder o
another mail folder. This object is similar to the
MailItem object, but it contains only the
Subject, Received, Date, Time, Sender, and
Size properties and the first 256 characters of
the body of the message. You use it to give
someone who's connecting in remote mode
enough information to decide whether or not to
download the corresponding mail message.

Microsoft Office 97/Visual Basic Programmer's Guide Page 107 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

The Items collection of a MAPIFolder object contains the objects that
represent all the Outlook items in the specified folder. If a given folder doesn't
contain any Outlook items, the Count property for the Items collection is 0
(zero).

To return the Items collection of a MAPIFolder object, use the Items
property. To return a single AppointmentItem, ContactItem, JournalItem,
MailItem, NoteItem, PostItem, or TaskItem object from its respective
Items collection, use Items(index), where index is the item's name or index
number.

The following example returns the first item with the subject "Need your advice"
in myFolder.

Set myItem = myFolder.Items("Need your advice")

The following example returns the first item in myFolder.

Set myItem = myFolder.Items(1)

To add items to the Items collection, use the Add method.

Note If you don't specify item type, it defaults to the type of the parent folder,
or to MailItem if this folder doesn't have a type assigned to it. You can also

ReportItem Represents a mail-delivery report in the Inbox
folder or another mail folder. This object is
similar to the MailItem object, and it contains
a report (usually the nondelivery report) or
error message from the mail transport system.

TaskItem Represents a task (an assigned, delegated, or
self-imposed task to be performed within a
specified time frame) in a Tasks folder. Like
appointments or meetings, tasks can be
delegated. Tasks are delegated when you
assign them to one or more delegates, using
the Assign method.

TaskRequestItem Represents a change to the recipient's task list,
initiated either by another party or as a result
of a group assignment. Unlike with other
Outlook objects, you cannot create a
TaskRequestItem object or find an existing one
in the Items collection. It's created
automatically when you apply the Assign
method to a TaskItem object to assign
(delegate) the associated task to another user.

To return the TaskRequestItem object and
work directly with the TaskItem object to
respond to the request, use the
GetAssociatedTask method.

Microsoft Office 97/Visual Basic Programmer's Guide Page 108 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

assign to an item any valid message class as a type. You'll want to do this when
you're creating customs forms.

The following Automation example gets the current Contacts folder and adds a
new ContactItem object to it.

Set olMAPI = GetObject("","Outlook.Application").GetNameSpace("MAPI")
Set myItem = olMAPI.GetDefaultFolder(olFolderContacts).Items.Add

The following VBScript example adds a custom form to the default Tasks folder.

Set olMAPI = Application.GetNameSpace("MAPI")
Set myForm = olMAPI.GetDefaultFolder(13).Items _
 .Add("IPM.Task.myTask")

The easiest way to return a new AppointmentItem, ContactItem,
JournalItem, MailItem, NoteItem, PostItem, or TaskItem object directly
from the Application object is to use the CreateItem method with the
appropriate OlItems constant. The following VBScript example uses the
Application object to create a new contact.

Set myContact = Application.CreateItem(2)

If you've used the ActiveInspector property to return an Inspector object,
you can use the CurrentItem property to return the object that represents the
Outlook item displayed in the inspector. The following Automation example
returns the active Inspector object and displays the name of the item that the
inspector is displaying.

Set olApp = GetObject("","Outlook.Application")
Set currInspect = olApp.ActiveInspector
MsgBox "The active item is " & currInspect.CurrentItem.Subject

To return an Inspector object associated with an Outlook item, use the
GetInspector method.

Objects Supported by Outlook Items

Every Outlook item can be analyzed or modified by reading or setting its
properties or applying its methods. In addition, every Outlook item can contain
other objects that represent more complex qualities or behaviors of the item;
for example, there are objects that represent the recipients of the item, the files
attached to the item, and the customized pages and controls of the item. The
following table describes the objects contained in Outlook items.

Microsoft Office 97/Visual Basic Programmer's Guide Page 109 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

For more information about these objects, as well as examples of using them in
code, see the corresponding topics in Help.

Events Supported by Outlook Items

The events supported by Outlook items are the key to programming Outlook in
VBScript. While designing a form, you can write event procedures in the Script
Editor and save that script with the form. You can write procedures that respond
to changes in the item or that respond to the user's clicking a control on the
form. Within an event procedure, you can use any of the objects exposed by the
Outlook type library. For information about the features and restrictions of
VBScript, see "Using Automation and VBScript" later in this chapter.

The names of event procedures for items are composed of the word "Item"
followed by an underscore character (_) and the name of the event (for
example, "Item_Open"). Within an event procedure, you can use the word
"Item" to refer to the object that represents the Outlook item where the event
occurred. The following example adds the date and time that the Outlook item
was opened to the end of the item's subject line.

Function Item_Open()
Item.Subject = Item.Subject & " [opened " & Now & "]"
End Function

For information about adding event procedures to a script in Outlook, see "Using
Automation and VBScript" later in this chapter.

Object Description

Actions (Action) Represent specialized actions (for example, the
voting options response) that you can perform
on an item.

Attachments (Attachment) Represent linked or embedded objects
contained in an item.

FormDescription Represents the general properties of the form
for an item.

Pages Represents the customized pages of an item.
Every Inspector object has a Pages
collection, whose count is 0 (zero) if the item
has never been customized before.

Recipients (Recipient) Represent users or resources in Outlook;
generally, recipients are mail message
addressees.

RecurrencePattern Represents the pattern of incidence of recurring
appointments and tasks for the associated
AppointmentItem or TaskItem object.

UserProperties
(UserProperty)

Represent the custom fields added to an item
at design time.

Microsoft Office 97/Visual Basic Programmer's Guide Page 110 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Your procedures can respond to some events in Outlook by preventing the
default behavior of Outlook from occurring — that is, the procedures can
interrupt the events. For example, if the user clicks Save on the File menu of
an item, you can prompt the user for confirmation and prevent the item from
being saved if the user reconsiders. Procedures that interrupt events can be
declared as Function procedures; to indicate whether a given event should be
allowed to finish, you assign True or False to the function value before the
procedure ends. Events that can be interrupted include the following: Close,
CustomAction, Forward, Open, Reply, ReplyAll, Send, and Write.

Note If you don't intend to interrupt an event that can be interrupted, you can
declare your procedure as a Sub procedure rather than a Function procedure.
Procedures that respond to events that cannot be interrupted must be declared
as Sub procedures.

Close Event

The Close event occurs when the inspector associated with the item is being
closed. When the event occurs, the inspector is still open on the desktop. You
can prevent the inspector from closing by setting the function value to False.
The following example automatically saves an item without prompting the user
when the item closes.

Function Item_Close()
If not Item.Saved Then
 Item.Save
End If
Item_Close = True
End Function

CustomAction Event

The CustomAction event occurs when one of the item's custom actions is
executed. Both the name of the custom action and the object that represents
the newly created item resulting from the custom action are passed to the
event. You can prevent the custom action's behavior and prevent the item from
being displayed by setting the function value to False. The following example
sets a property of the response item created by Action1.

Function Item_CustomAction(ByVal myAction, ByVal myResponse)
Select Case myAction.Name
 Case "Action1"
 myResponse.Subject = "Changed by VBScript"
 Case Else
End Select
Item_CustomAction = True
End Function

CustomPropertyChange Event

The CustomPropertyChange event occurs when one of the item's custom
properties is changed. These properties are the nonstandard properties added to
the item at design time. The property name is passed to the procedure, making

Microsoft Office 97/Visual Basic Programmer's Guide Page 111 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

it possible for the procedure to determine which property was changed. The
following example enables a control when a Boolean field is set to True.

Sub Item_CustomPropertyChange(ByVal myPropertyName)
Select Case myPropertyName
 Case "RespondBy"
 Set cstPages = Item.GetInspector.ModifiedFormPages
 Set ctlRespond = cstPages("Page 2").Controls("DateToRespond")
 If Item.UserProperties("RespondBy").Value Then
 ctlRespond.Enabled = True
 ctlRespond.Backcolor = 1
 Else
 ctlRespond.Enabled = False
 ctlRespond.Backcolor = 0
 End If
 Case Else
End Select
End Sub

Forward Event

The Forward event occurs when the user selects the Forward action for an
item. The newly created item is passed to the procedure. You can prevent the
new item from being displayed on the desktop by setting the function value to
False. The following example disables forwarding an item and displays a
message that the item cannot be forwarded.

Function Item_Forward(ByVal myForwardItem)
MsgBox "You cannot forward this message."
Item_Forward = False
End Function

Open Event

The Open event occurs when the inspector for an item is being opened. When
this event occurs, the Inspector object is initialized but not yet displayed. You
can prevent the Inspector object from being opened on the desktop by setting
the function value to False. The following example opens an item in its
inspector and displays the All Fields page.

Function Item_Open()
Item.GetInspector.SetCurrentFormPage "All Fields"
Item_Open = True
End Function

PropertyChange Event

The PropertyChange event occurs when one of the item's standard properties
(such as Subject or To) is changed. The property name is passed to the
procedure, making it possible for the procedure to determine which property
was changed. The following example disables setting a reminder for an item.

Sub Item_PropertyChange(ByVal myPropertyName)
Select Case myPropertyName

Microsoft Office 97/Visual Basic Programmer's Guide Page 112 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

 Case "ReminderSet"
 MsgBox "You cannot set a reminder on this item."
 Item.ReminderSet = False
 Case Else
End Select
End Sub

Read Event

The Read event occurs each time the user opens an existing item for editing.
This event differs from the Open event in that Read is called whenever the user
modifies the item in an explorer view that supports editing or whenever the user
opens the item in an inspector. The following example increments a counter to
track how often an item is read.

Sub Item_Read()
 Set myProperty = Item.UserProperties("ReadCount").Value
 myProperty.Value = myProperty.Value + 1
 myItem.Save
End Sub

Reply Event

The Reply event occurs when the user replies to an item's sender. The newly
created item is passed to the procedure. You can prevent the new item from
being displayed on the desktop by setting the function value to False. The
following example sets the Sent Items folder for the new item to the folder in
which the original item resides.

Function Item_Reply(ByVal myResponse)
Set myResponse.SaveSentMessageFolder = Item.Parent
Item_Reply = True
End Function

ReplyAll Event

The ReplyAll event occurs when the user replies to an item's sender and
recipients. The newly created item is passed to the procedure. You can prevent
the new item from being displayed on the desktop by setting the function value
to False. The following example reminds the user that he or she is replying to
all the original recipients of an item and, depending on the user's response,
either makes it possible for the action to continue or prevents it from
continuing.

Function Item_ReplyAll(ByVal myResponse)
myResult = MsgBox ("Do you really want to reply to all original recip
 289, "Flame Protector")
If myResult = 1 Then
 Item_ReplyAll = True
Else
 Item_ReplyAll = False
End If
End Function

Microsoft Office 97/Visual Basic Programmer's Guide Page 113 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Send Event

The Send event occurs when the user sends an item. You can prevent the item
from being sent by setting the function value to False. If you interrupt this
event, the item's inspector remains displayed on the desktop. The following
example sends an item that has an automatic expiration date of one week.

Function Item_Send()
Item.ExpiryTime = Date + 7
Item_Send = True
End Function

Write Event

The Write event occurs each time an item is saved — either explicitly, as with
the Save or SaveAs method, or implicitly, as in response to a prompt when the
item's inspector is being closed. You can prevent the item from being saved by
setting the function value to False. The following example warns the user that
item is about to be saved and will overwrite any existing item and, depending
on the user's response, either makes it possible for the action to continue or
prevents it from continuing.

Function Item_Write()
myResult = MsgBox ("The item is about to be saved. Do you wish to ove
 existing item?", 289, "Save")
If myResult = 1 Then
 Item_Write = True
Else
 Item_Write = False
End If
End Function

Click Event

The Click event occurs when the user clicks a form control (such as an ActiveX
control or a custom field). You can create as many Click event procedures as
you have controls on a form. The name of each event procedure is the name of
the control (such as "CommandButton1"), followed by an underscore character
(_) and the word "Click." The following example displays a greeting containing
the logon name of the current user whenever the button named
"CommandButton1" is clicked.

Sub CommandButton1_Click()
MsgBox "Hello " & Application.GetNameSpace("MAPI").CurrentUser
End Sub

Unlike with the word "Item" in other event procedures, you cannot use the
name of a control to gain access to the object in a Click event procedure. The
properties and methods of the control itself aren't accessible from VBScript.

Note The Message and Note form controls don't support the Click event.

Microsoft Office 97/Visual Basic Programmer's Guide Page 114 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Using Automation and VBScript

There are two ways to program Outlook objects: remotely from another Office
application by using Visual Basic and Automation, or locally in Outlook by using
VBScript. You use Automation when you want to control an entire Outlook
session; for example, you can copy data from a Microsoft Excel worksheet into a
new mail message and send it to a list of recipients, all without leaving
Microsoft Excel. You use VBScript when you want to design an Outlookbased
solution; for example, you can create a custom mail message form that contains
custom controls, fields, and backup processes for a particular workgroup.

Using Automation

Automating Outlook from another Office application is the same as automating
any other Office application remotely. You must first reference the Outlook type
library; then, use the CreateObject function to start a new session of Outlook,
or use the GetObject function to automate a session that's already running.
After returning the Outlook Application object by using one of these two
functions, you can write code in your controlling module that directly uses the
objects, properties, methods, and constants defined in the Outlook type library.

Note If you use Automation to control Outlook, you cannot write event
procedures to respond to the events supported by Outlook items.

For more information about using Automation to control one Office application
from another one, see Chapter 2, "Understanding Object Models."

For uptodate information about VBScript, see the Visual Basic Scripting Edition
Web site at http://www.microsoft.com/vbscript/

Using VBScript

If you're creating an Outlookbased solution, you can program Outlook from
within your custom forms by writing scripts using VBScript at design time (while
you're adding controls and fields to forms after clicking Design Outlook Form
on the Tools menu). To view and edit scripts on a form, click View Code on the
Form menu in design mode. The Script Editor has templates for all the item
events. To add an event template to your script in the Script Editor, click Event
on the Script menu, click an event name in the list, and then click Add. The
appropriate Sub…End Sub or Function…End Function statement is inserted,
with its arguments (if any) specified. (You cannot add Click event procedures by
using the Event command on the Script menu; you must type the Sub…End
Sub statement for those procedures from scratch.)

Note You can write Sub and Function procedures that don't respond to events,
but they won't run unless they're called from valid event procedures.

In Outlook, users cannot run your scripts using Outlook commands. Instead,
scripts run automatically in response to events that the user triggers. For
example, when the user opens an item based on your form template, the Open
event occurs; if an Open event procedure exists, it runs automatically. Only
Outlook items and controls on those items support events; folders don't support

Microsoft Office 97/Visual Basic Programmer's Guide Page 115 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

events.

VBScript is a subset of the Visual Basic language. It's designed to be a small,
lightweight interpreted language, so it doesn't use strict types (only Variant).
VBScript is also intended to be a safe subset of Visual Basic, so it doesn't
include file input/output functions or Automation functions, and it doesn't allow
declarations to external functions. The following sections describe the
capabilities and restrictions of VBScript in detail.

VBScript Features

The following table shows the Visual Basic features and keywords that were
included in VBScript.

Category Feature or keyword

Array handling Dim, ReDim
IsArray
Erase
LBound, UBound

Assignment =
Set

Comment Rem

Constants and literals Empty
Nothing
Null
True, False

Control flow Do ... Loop
For ... Next
If ... Then ... Else
Select Case
While ... Wend

Conversion Abs
Asc, AscB, AscW
Chr, ChrB, ChrW
CBbool, CByte
CDate, CDbl, CInt
CLng, CSng, CStr
DateSerial, DateValue
Hex, Oct
Fix, Int
Sgn
TimeSerial, TimeValue

Date and time Date, Time
DateSerial, DateValue
Day, Month, Weekday, Year
Hour, Minute, Second
Now
TimeSerial, TimeValue

Declaration Dim, ReDim
Function, Sub

Microsoft Office 97/Visual Basic Programmer's Guide Page 116 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Visual Basic Features Omitted from VBScript

The following table shows the Visual Basic features and keywords that were
omitted from VBScript.

Error handling Err
On Error

Input and output InputBox
MsgBox

Math Atn, Cos, Sin, Tan
Exp, Log, Sqr
Randomize, Rnd

Objects IsObject

Operators Addition (+), subtraction (–)
Exponentiation (^)
Modulus arithmetic (Mod)
Multiplication (*), division (/), integer division
(\)
Negation (–)
String concatenation (&)
Equality (=), inequality (<>)
Less than (<), less than or equal to (<=)
Greater than (>), greater than or equal to
(>=)
Is
And, Or, Xor
Eqv, Imp

Options Option Explicit

Procedures Call
Function, Sub

Strings Asc, AscB, AscW
Chr, ChrB, ChrW
InStr, InStrB
Len, LenB
LCase, UCase
Left, LeftB
Mid, MidB
Right, RightB
Space
StrComp
String
LTrim, RTrim, Trim

Variants IsArray
IsDate
IsEmpty
IsNull
IsNumeric
IsObject
VarType

Microsoft Office 97/Visual Basic Programmer's Guide Page 117 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Category Omitted feature or keyword

Array handling Array function
Option Base
Private, Public
Declaring arrays with lower bound <> 0

Collection Add, Count, Item, Remove
Access to collections using the ! character (for
example, myCollection!Foo

Conditional compilation #Const
#If ... Then ... Else

Constants and literals Const
All intrinsic constants
Type declaration characters (for example, 256&

Control flow DoEvents
For Each ... Next
GoSub ... Return, GoTo
On Error GoTo
On ... GoSub, On ... GoTo
Line numbers, line labels
With ... End With

Conversion CCur, CVar, CVDate
Format
Str, Val

Data types All intrinsic data types except Variant
Type ... End Type

Date and time Date statement, Time statement
Timer

DDE LinkExecute, LinkPoke, LinkRequest,
LinkSend

Debugging Debug.Print
End, Stop

Declaration Declare (for declaring DLLs)
Property Get, Property Let, Property Set
Public, Private, Static
ParamArray, Optional
New

Error handling Erl
Error
On Error ... Resume
Resume, Resume Next

File input and output All

Financial All financial functions

Object manipulation CreateObject function
GetObject function
TypeOf

Microsoft Office 97/Visual Basic Programmer's Guide Page 118 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Variables in VBScript

Variable names follow the standard rules for naming anything in VBScript. A
variable name:

� Must begin with an alphabetic character.

� Cannot contain an embedded period.

� Must not exceed 255 characters.

� Must be unique in the scope in which it's declared.

Generally, when you declare a variable within a procedure, only code within that
procedure can get to or change the value of that variable; it has local scope and
is known as a procedurelevel variable. When you declare a variable outside a
procedure, you make it recognizable to all the procedures in your script; it has
scriptlevel scope and is known as a scriptlevel variable.

When you're using variables in VBScript, the following limitations apply:

� There can be no more than 127 procedurelevel variables (arrays count as
a single variable).

� Each script is limited to no more than 127 scriptlevel variables.

The length of time a variable exists is called its lifetime. A scriptlevel variable's
lifetime extends from the time it's declared until the time the script is finished
running. A local variable's lifetime begins when its declaration statement is
encountered as the procedure begins, and it ends when the procedure
concludes. Local variables are thus ideal as temporary storage space while a
procedure is running. You can have local variables with the same name in
different procedures, because each variable is recognized only by the procedure
in which it's declared.

Objects Clipboard
Collection

Operators Like

Options Def type
Option Base
Option Compare
Option Private Module

Strings Fixed-length strings
LSet, RSet
Mid statement
StrConv

Using objects TypeName
Collection access using ! character (for
example, myCollection!Foo

Microsoft Office 97/Visual Basic Programmer's Guide Page 119 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

A variable's scope is determined by where you declare it. At script level, the
lifetime of a variable is always the same; it exists while the script is running. At
procedure level, a variable exists only while the procedure is running; when the
procedure exits, the variable is destroyed.

Constants in VBScript

When you automate Outlook by using an Automation object in an application
that supports Visual Basic, you can use builtin constants to specify property and
argument values. However, when you automate Outlook by using VBScript, you
must use the numeric values that the builtin constants represent. For lists of the
numeric values of builtin Outlook constants, see "Microsoft Outlook Constants"
in Help.

Variants in VBScript

VBScript has only one data type, called Variant. Variant is a special kind of
data type that can contain different kinds of information, depending on how the
value is used. Because Variant is the only data type in VBScript, it's also the
data type returned by all functions in VBScript.

At its simplest, Variant can contain either numeric or string information.
Variant behaves as a number when it's used in a numeric context and as a
string when it's used in a string context. If you're working with data that
resembles numeric data, VBScript treats it as such and processes it accordingly.
If you're working with data that's clearly string data, VBScript treats it as such.
As in other Microsoft languages, numbers enclosed in quotation marks are
treated as strings.

Beyond the simple numeric or string classifications, a Variant can make further
distinctions about the specific nature of numeric information, such as
information that represents a date or time. When used with other date or time
data, the result is always expressed as a date or a time. Variant can contain
numeric information ranging in size from Boolean values to huge floatingpoint
numbers. These various categories of information that can be contained in a
Variant are called subtypes. Usually you'll be able to put the kind of data you
want in a Variant, and it will most likely behave in a way that's suited to the
data it contains.

The subtypes supported by VBScript correspond to the data types supported by
Visual Basic. For information about the data types supported by Visual Basic,
see Chapter 1, "Programming Basics."

The VarType function returns a value that indicates the subtype of a variable,
giving you information about how your data is stored in a Variant. The
following table shows values that can be returned by the VarType function and
their respective Variant subtypes.

Microsoft Office 97/Visual Basic Programmer's Guide Page 120 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Note The VarType function never returns the value for Array by itself; it's
always added to some other value to indicate an array of a particular type. The
value for Variant is returned only after it's been added to the value for Array to
indicate that the argument to the VarType function is an array. For example, the
value returned for an array of integers is calculated as 2+8192, or 8194. If an
object has a default property, VarType(object) returns the type of that property.

Contents
� Working with the Application Object
� Working with the Presentation Object
� Working with the Slide, SlideRange, and Slides Objects
� Working with the Selection Object
� Working with the View and SlideShowView Objects
� Controlling How Objects Behave During a Slide Show

This chapter discusses how to work with each of the primary objects in the
Microsoft PowerPoint 97 object model: how to return it, what tasks you can use
it to automate, and what lowerlevel objects you can access from it.

Subtype Return value

Empty 0

Null 1

Integer 2

Long 3

Single 4

Double 5

Currency 6

Date (Time) 7

String 8

Automation Object 9

Error 10

Boolean 11

Variant 12 (used only with an array of Variant types)

Non-Automation Object 13

Byte 17

Array 8192

C H A P T E R 6 Microsoft Office 97/Visual Basic Programmer's Guide

Microsoft PowerPoint Objects

Microsoft Office 97/Visual Basic Programmer's Guide Page 121 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

For general information about understanding and navigating Office object
models, see Chapter 2, "Understanding Object Models." To view a graphical
representation of the entire PowerPoint 97 object model, see "Microsoft
PowerPoint Objects" in Help. For a detailed description of a specific object, click
the name of that object on the diagram.

Working with the Application Object

When you start a PowerPoint session, you create an Application object. You
use properties and methods of the Application object to control applicationwide
attributes and behaviors, to control the appearance of the application window,
and to get to the rest of the PowerPoint object model.

Note The following properties of the Application object can be used without
the Application object qualifier: ActivePresentation, ActiveWindow,
AddIns, Assistant, CommandBars, Presentations, SlideShowWindows,
and Windows. All other properties and methods must have the object qualifier.
For example, both of the following lines of code are valid.

Application.ActivePresentation.PrintOut
ActivePresentation.PrintOut

However, you cannot omit the object qualifier from the following line.

Application.Quit

Returning the Application Object

From code running in PowerPoint, you can use the Application keyword alone
to return the PowerPoint Application object. The following example sets the left
position for the application window.

How Do I Display Visual Basic Help for PowerPoint?

To use Visual Basic Help for PowerPoint, you must click Custom during
Setup and select the Online Help for Visual Basic check box for
PowerPoint. Otherwise, Visual Basic Help won't be installed. If you've
already installed PowerPoint, you can run Setup again to install Visual
Basic Help.

To see the contents and index of Visual Basic Help for PowerPoint, click
Contents and Index on the Help menu in the Visual Basic Editor. On
the Contents tab in the Help Topics dialog box, double-click "Microsoft
PowerPoint Visual Basic Reference," and then double-click "Shortcut to
Microsoft PowerPoint Visual Basic Reference." The Help Topics dialog
box should reappear, displaying the contents and index for Visual Basic
Help for PowerPoint.

Microsoft Office 97/Visual Basic Programmer's Guide Page 122 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Application.Left = 30

If you set an object variable to the Application object, declare it as
PowerPoint.Application. The following example sets an object variable to the
PowerPoint Application object.

Dim appPPT As PowerPoint.Application
Set appPPT = Application

You can also use the Application property of any PowerPoint object to return
the PowerPoint Application object. This is useful for returning the PowerPoint
Application object from a PowerPoint presentation embedded in a document
created in another application. The following example, when run from Microsoft
Excel, sets an object variable to the PowerPoint Application object. Shape one
on worksheet one must be an embedded PowerPoint presentation.

Dim appPPT As PowerPoint.Application
Set embeddedPres = Worksheets(1).Shapes(1)
embeddedPres.OLEFormat.Activate
Set appPPT = embeddedPres.OLEFormat.Object.Object.Application

Controlling the Appearance of the Application
Window

You can use properties and methods of the Application object to control the
appearance of the application window. The following table shows which
properties and methods control which aspects of the application window's
appearance.

To do this Use this property or method

Activate the PowerPoint
application window

Activate method

Check to see whether the
PowerPoint application window
is active

Active property

Set or return text that appears
in the title bar of the PowerPoint
application window

Caption property

Set or return the size and
position of the PowerPoint
application window on the
screen

Height, Left, Top, and Width properties

Microsoft Office 97/Visual Basic Programmer's Guide Page 123 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Note that most of these properties and methods can also be applied to the
DocumentWindow object to control the appearance of the document window.

Controlling ApplicationWide Attributes and Behavior

You can use other properties and methods of the Application object to control
applicationwide settings or behaviors, as shown in the following table.

Getting to Presentations, Document Windows, and
Slide Show Windows

The properties of the Application object that you'll probably use most provide
access to objects that represent presentations, document windows, slide show
windows, and addins. Use the Presentations property of the Application
object to return any open presentation, or use the ActivePresentation
property to return the active presentation. Use the AddIns property to return
any available addin (an addin is a special type of presentation you use to

Set or return a value that
controls whether the application
window is visible. You must set
this property to True when you
create a PowerPoint
Application object in another
application if you want to be
able to see PowerPoint on your
screen.

Visible property

Set or return a value that
controls whether the PowerPoint
application window is
maximized, minimized, or
floating.

WindowState property

To do this Use this property or method

Return the name of the active
printer

ActivePrinter property

Return the PowerPoint build
number

Build property

Display a Help topic Help method

Return the name of the
operating system

OperatingSystem property

Return the path to the
PowerPoint application.

Path property

Quit PowerPoint Quit method

Run a Visual Basic procedure Run method

Return the PowerPoint version
number

Version property

Microsoft Office 97/Visual Basic Programmer's Guide Page 124 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

assemble and distribute custom features). Use the Windows property of the
Application object to return any open document window, or use the
ActiveWindow property to return the active document window. Use the
SlideShowWindows property to return an open slide show window.

Getting to Shared Office Object Models

Other properties of the Application object provide access to objects that
represent shared Office features, such as menus and toolbars, file searching,
the Visual Basic Editor, and the Office Assistant. For more information about
these properties, see "Application Object" in Help.

You can use other properties of the Application object to control application-
wide settings and behavior, as shown in the following table.

Working with the Presentation Object

When you open or create a file in PowerPoint, you create a Presentation
object. (You may notice that many properties and methods of the Presentation
object correspond to items on the File menu.) You use properties and methods
of the Presentation object or its collection to open, create, save, and close
files; to control presentationwide attributes and behavior; and to get to slides
and masters in the presentation.

Returning the Presentation Object

Use the ActivePresentation property to return the presentation that's
displayed in the active window. The following example saves the active
presentation.

ActivePresentation.Save

You can return any open presentation by using the syntax Presentations
(index), where index is the presentation's name or index number. The following
example adds a slide to the beginning of Sample Presentation.

Presentations("Sample Presentation").Slides.Add 1, 1

Use the Presentation property to return the presentation that's currently
displayed in the specified document window or slide show window. The following
example displays the name of the slide show that's running in slide show

To return a reference to Use this property

Office Assistant Assistant property

PowerPoint menus and toolbars CommandBars property

File search FileSearch property (FileFind property on the
MacIntosh)

Visual Basic Editor VBE property

Microsoft Office 97/Visual Basic Programmer's Guide Page 125 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

window one.

MsgBox SlideShowWindows(1).Presentation.Name

To return a Presentation object that represents an embedded presentation,
use the Object property of the OLEFormat object for the shape that contains
the embedded presentation. The following example sets an object variable to
the embedded presentation in shape three on slide one in the active
presentation.

Dim embeddedPres As Presentation
Set embeddedPres = ActivePresentation.Slides(1).Shapes(3).OLEFormat.O

Opening an Existing Presentation

To open an existing presentation, use the Open method. This method always
applies to the Presentations collection, which you return by using the
Presentations property. The following example opens the file Pres1.ppt and
then displays the presentation in slide sorter view.

Dim myPres As Presentation
Set myPres = Presentations.Open(FileName:="c:\My documents\pres1.ppt"
myPres.Windows(1).ViewType = ppViewSlideSorter

Notice that the return value of the Open method is a Presentation object that
refers to the presentation that was just opened.

Tip The file name in this example contains a path. If you don't include a path,
the file is assumed to be in the current folder. Not including the path in the file
name may cause a runtime error, because as soon as the user makes a different
folder the current folder, Visual Basic can no longer find the file.

Creating a New Presentation

To create a new presentation, apply the Add method to the Presentations
collection. The following example creates a new presentation.

Presentations.Add

The Add method returns the presentation that's just been created. When you
add a presentation, you can set an object variable to the returned presentation
so that you can refer to the new presentation in your code. The following
example creates a new presentation and adds a slide to it.

Dim myPres As Presentation
Set myPres = Presentations.Add
myPres.Slides.Add 1, ppLayoutTitle

Another way to make it easy to refer to the presentation later in your code is to
assign a meaningful name to the presentation as you add it. Use the SaveAs

Microsoft Office 97/Visual Basic Programmer's Guide Page 126 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

method to assign a name to a presentation. (The Name property of the
Presentation object is readonly, so you cannot use it to set the presentation's
name.) The following example creates a new presentation and immediately
saves it under the name "Sales Report.ppt." The new name is then used to
index the presentation within the Presentations collection and add a slide to it.

Presentations.Add.SaveAs "Sales Report"
Presentations("Sales Report").Slides.Add 1, ppLayoutTitle

Importing a Presentation from a Word Outline

To create a presentation from a Word outline, use the PresentIt method of the
Word Document object. The following example, run from Word, exports
Presentation Outline.doc as a presentation.

Document.Open("C:\Presentation Outline.doc")PresentIt

Activating a Presentation

There's no Activate method for the Presentation object. To activate a
PowerPoint presentation, activate one of the document windows in which the
presentation appears. The following example activates the first document
window in which the Sales Report presentation appears.

Presentations("Sales Report").Windows(1).Activate

Controlling Slide Numbering, Size, and Orientation in
a Presentation

Use the PageSetup property of the Presentation object to return the
PageSetup object. This object contains settings for slide and notes page
orientation, slide size and orientation, and slide numbering. The following
example sets all slides in the active presentation to be 11 inches wide and 8.5
inches high and sets the slide numbering for the presentation to start at 17.

With ActivePresentation.PageSetup
 .SlideWidth = 11 * 72
 .SlideHeight = 8.5 * 72
 .FirstSlideNumber = 17
End With

Note that the values you specify for some of the properties of the PageSetup
object can automatically set values for other properties in a commonsense way
that mimics behavior in the Page Setup dialog box (File menu) in the user
interface. For example, setting the SlideOrientation property will switch the
values of the SlideHeight and SlideWidth properties, if appropriate. By the
same token, explicitly setting the SlideWidth and SlideHeight properties
automatically sets SlideSize to ppSlideSizeCustom and sets the
SlideOrientation property to the appropriate value (based on whichever is
greater — slide width or height).

Microsoft Office 97/Visual Basic Programmer's Guide Page 127 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Getting a Consistent Look Throughout a Presentation

You can use templates and masters to ensure a consistent look throughout your
presentation. Use the ApplyTemplate method of the Presentation object to
apply a design template to the presentation.

ActivePresentation.ApplyTemplate "c:\templates\presentation designs\m

Note The available color schemes change when you apply a template. If
you've added a standard color scheme to the presentation, it will be lost when
the ApplyTemplate method is applied.

Use the HandoutMaster, NotesMaster, SlideMaster, or TitleMaster property
of the Presentation object to return a Master object that represents a slide,
notes, or handout master. You can apply a background fill or color scheme to a
master, add background graphics or ActiveX controls to a master, or format the
text styles and layout of a master when you want to apply changes to all slides
based on that master rather than applying them to one slide at a time. The
following example sets the background fill for the slide master for the active
presentation.

ActivePresentation.SlideMaster.Background.Fill.PresetGradient _
 msoGradientHorizontal, 1, msoGradientBrass

If you want a specific shape, such as a picture or an ActiveX control, to show up
on all slides in a presentation, add it to the master. An ActiveX control on the
master will respond to events during a slide show whenever you click the
control, on any slide where it appears.

To make uniform changes to the text formatting in a presentation, use the
TextStyles property of the Master object to return the TextStyles collection.,
This collection contains three TextStyle objects that represent the following:
the style for title text, the style for body text, and the style for default text (text
in AutoShapes). Each TextStyle object contains a TextFrame object that
describes how text is placed within the textbounding box and a Ruler object
that contains tab stops and outlineindent formatting information. Use the
Levels property of the TextStyle object to return the TextStyleLevels
collection. This collection contains outline text formatting information for the
five available outline levels (for title text and default text, always use level one).
The following example sets the font name, the font size, and the space after
paragraphs for levelone body text on all the slides in the active presentation
that are based on the master.

With ActivePresentation.SlideMaster.TextStyles(ppBodyStyle).Levels(1)
 With .Font
 .Name = "Arial"
 .Size = 36
 End With
 With .ParagraphFormat
 .LineRuleAfter = False
 .SpaceAfter = 6
 End With
End With

Microsoft Office 97/Visual Basic Programmer's Guide Page 128 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Note You can set the title and body text styles to different values for each
master. The default text style doesn't apply to each individual master but rather
to the entire presentation.

Printing a Presentation

Use the PrintOut method of the Presentation object to print a presentation,
as shown in the following example.

ActivePresentation.PrintOut

To set print options before printing, use the properties and methods of the
PrintOptions object. Use the PrintOptions property of the Presentation
object to return the PrintOptions object. The following example prints three
collated copies of the active presentation.

With ActivePresentation.PrintOptions
 .NumberOfCopies = 3
 .Collate = True
 .Parent.PrintOut
End With

Note that the Parent property of the PrintOption object used in the preceding
example returns the Presentation object.

Saving a Presentation

When you save a new presentation for the first time, or when you want to save
an existing presentation under a new name, use the SaveAs method. The
following example creates a new presentation, adds a slide to it, and saves it
under the name "Sample."

With Presentations.Add
 .Slides.Add 1, ppLayoutTitle
 .SaveAs "Sample"
End With

For subsequent saves, use the Save method. The following example saves the
active presentation.

ActivePresentation.Save

Closing a Presentation

To close a presentation, use the Close method of the Presentation object. If
there are changes in any presentation, PowerPoint displays a message asking
whether you want to save changes. The following example closes Pres1.ppt.

Presentations("pres1.ppt").Close

Microsoft Office 97/Visual Basic Programmer's Guide Page 129 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

If you want to close a presentation without saving changes, set the Saved
property to True before closing the presentation, as shown in the following
example.

With Application.Presentations("pres1.ppt")
 .Saved = True
 .Close
End With

Setting Up and Running a Slide Show

Use the SlideShowSettings property of the Presentation object to return the
SlideShowSettings object, which lets you set up and run the slide show for
the presentation. The following example sets the slide show in the active
presentation to start on slide two and end on slide four, to advance slides by
using the timings set in the first section, and to run in a continuous loop until
you press ESC. Finally, the example runs the slide show.

With ActivePresentation.SlideShowSettings
 .StartingSlide = 2
 .EndingSlide = 4
 .RangeType = ppShowSlideRange
 .AdvanceMode = ppSlideShowUseSlideTimings
 .LoopUntilStopped = True
 .Run
End With

Getting to the Slides in a Presentation

Use the Slides property of the Presentation object to get to the individual
slides in a presentation and, from there, to the graphics and text on the slides.
The following section discusses in detail how to work with slides.

Working with the Slide, SlideRange, and
Slides Objects

There are three different objects in the PowerPoint object model that represent
slides: the Slides collection, which represents all the slides in a presentation;
the SlideRange collection, which represents a subset of the slides in a
presentation; and the Slide object, which represents an individual slide. In
general, you use the Slides collection to create slides and when you want to
iterate through all the slides in a presentation; you use the Slide object when
you want to format or work with a single slide; and you use the SlideRange
collection when you want to format or work with multiple slides the same way
you work with multiple slides in the user interface.

Returning the Slides Collection

To return the entire collection of slides in a presentation, use the Slides

Microsoft Office 97/Visual Basic Programmer's Guide Page 130 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

property. The following example inserts slides from the Clipboard at the end of
the active presentation.

ActivePresentation.Slides.Paste

Returning the Slide Object

Use the Item method of the Slides collection to return a single Slide object
that you specify by name or index number (because the Item method is the
default method, you can omit it from your code). The following example copies
the third slide in the active presentation to the Clipboard.

ActivePresentation.Slides(3).Copy

Because the index number of a particular slide can change when you add,
delete, or reorder slides, you may find it more reliable to use the
FindBySlideID property to specify a slide by its slide ID number, a unique
identifier that's assigned to a slide when it's added to a presentation and that
doesn't change if you change the order of the slides (if you copy the slide into
another presentation, it's assigned a new ID number). The following example
copies the slide with the ID number 256 to the Clipboard.

ActivePresentation.Slides.FindBySlideID(256).Copy

Use the SlideID property of the Slide object to get the slide's ID number. The
following example adds a slide to the active presentation and sets a variable to
the slide ID number for the new slide.

Dim newSlideID As Long
newSlideID = ActivePresentation.Slides.Add(1, ppLayoutTitleOnly).Slid

To return the slide that's currently displayed in the specified document window
or slide show window view, use the Slide property of the View object for the
window. The following example copies the slide that's currently displayed in
window two to the Clipboard.

Windows(2).View.Slide.Copy

To return a slide within the selection, use Selection.SlideRange(index), where
index is the slide's name or index number. The following example sets the
layout for slide one in the selection in the active window, assuming that the
selection contains at least one slide.

ActiveWindow.Selection.SlideRange(1).Layout = ppLayoutTitle

Returning the SlideRange Object

Use Slides.Range(index), where index is either the slide's name or index
number or an array of slide index names or slide index numbers, to return a

Microsoft Office 97/Visual Basic Programmer's Guide Page 131 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

SlideRange object from the Slides collection. The following example sets the
background fill for slides one and three in the active presentation.

With ActivePresentation.Slides.Range(Array(1, 3))
 .FollowMasterBackground = False
 .Background.Fill.PresetGradient msoGradientHorizontal, 1, msoGrad
End With

Adding a Slide

Use the Add method of the Slides collection to create a new slide and add it to
the presentation. The following example adds a title slide to the beginning of
the active presentation.

ActivePresentation.Slides.Add 1, ppLayoutTitleOnly

Inserting Slides from a Word Outline

To insert slides based on a Word outline, use the InsertFromFile method. The
following example inserts the outline in Presentation Outline.doc as slides after
slide three in the active presentation.

ActivePresentation.Slides.InsertFromFile FileName:="C:\Presentation O

Setting the Slide Background and Color Scheme

If you want to set the background fill or color scheme for all the slides in a
presentation, use the Background or ColorScheme property of the Master
object, as discussed in the section "Getting a Consistent Look Throughout a
Presentation" earlier in this chapter. If, however, you want to set the
background fill or color scheme for a particular slide or set of slides, use the
Background or ColorScheme property of the Slide or SlideRange object.

To set the background fill for a slide or a set of slides, use the Background
property of the Slide or SlideRange object to return the SlideRange object
that represents the slide background, and use the Fill property to return the
FillFormat object that represents the background fill. You can then use the
properties and methods of the FillFormat object to set properties for the fill.
The following example sets a gradient fill for the background for slide one in the
active presentation.

With ActivePresentation.Slides(1)
 .FollowMasterBackground = False
 .Background.Fill.PresetGradient msoGradientHorizontal, 1, msoGrad
End With

Note To set the background for a slide independently of the slide master
background, set the FollowMasterBackground property for the slide to False.

To set the color scheme for a slide or a set of slides, use the ColorScheme
property of the Slide or SlideRange object to return the ColorScheme object

Microsoft Office 97/Visual Basic Programmer's Guide Page 132 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

that represents the color scheme. You can then set the ColorScheme object for
the slide to another ColorScheme object, or you can use the Colors method to
edit individual colors in the scheme. The following example sets the color
scheme for slide one in the active presentation to the third standard color
scheme (as counted from left to right and from top to bottom on the Standard
tab in the Color Scheme dialog box).

With ActivePresentation
 .Slides(1).ColorScheme = .ColorSchemes(3)
End With

The following example uses the Colors method to access the title color in the
color scheme for the active presentation and then uses the RGB property to
access the redgreenblue (RGB) value for that color and set it to the RGB value
for green that the RGB function generates.

ActivePresentation.Slides(1).ColorScheme.Colors(ppTitle).RGB = RGB(0,

Note The set of available color schemes changes when you apply a template.
If you've added a standard color scheme to a presentation, this color scheme
will be lost when the ApplyTemplate method is applied.

Choosing the Slide Layout

When you add a slide to a presentation, you specify what layout it should have
by using the Layout argument of the Add method. The following example adds
a slide that contains only a title placeholder to the beginning of the active
presentation.

ActivePresentation.Slides.Add 1, ppLayoutTitleOnly

You can check or change the layout of an existing slide by using the Layout
property. The following example changes the layout of slide one in the active
presentation to include a title placeholder, a text placeholder, and a chart
placeholder.

ActivePresentation.Slides(1).Layout = ppLayoutTextAndChart

Note When you switch slide layouts, any placeholders that contain text or an
object remain on the slide, although they may have been repositioned at the
time of the switch.

Adding Objects to a Slide

You add objects (such as AutoShapes, OLE objects, and pictures) to a slide by
using one of the methods of the Shapes collection. You return the Shapes
collection, which represents the entire drawing layer for a slide, using the
Shapes property of the Slide object. For information about how to create and
format objects on slides, see Chapter 10, "Shapes and the Drawing Layer." For
information about controlling how an object on a slide behaves during a slide
show, see "Controlling How Objects Behave During a Slide Show" later in this

Microsoft Office 97/Visual Basic Programmer's Guide Page 133 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

chapter.

Changing Slide Order

To change a slide's position in the presentation, cut the slide and then paste it
in its new position. The following example moves slide four in the active
presentation and makes it slide six. For this example to work, there must be at
least six slides in the presentation.

With ActivePresentation.Slides
 .Item(4).Cut
 .Paste 6
End With

Setting Slide Transition Effects

The properties that control the transition effects for a slide are stored in the
SlideShowTransition object, which you return by using the
SlideShowTransition property of the Slide or SlideRange object. The
following example specifies a Fast Strips DownLeft transition accompanied by
the Bass.wav sound for slide one in the active presentation. The example also
specifies that the slide advance automatically five seconds after the previous
animation or slide transition.

With ActivePresentation.Slides(1).SlideShowTransition
 .Speed = ppTransitionSpeedFast
 .EntryEffect = ppEffectStripsDownLeft
 .SoundEffect.ImportFromFile "c:\sndsys\bass.wav"
 .AdvanceOnTime = True
 .AdvanceTime = 5
End With
ActivePresentation.SlideShowSettings.AdvanceMode = _
 ppSlideShowUseSlideTimings

Note For the timings you set for your slide transition to take effect, the
AdvanceMode property of the SlideShowSettings object must be set to
ppSlideShowUseSlideTimings.

Getting to the Speaker's Notes on the Notes Page for
a Slide

To gain access to the text in the notes area on the notes page for a slide, use
the NotesPage property to return a SlideRange collection that represents the
specified notes page. The following example inserts text into placeholder two
(the notes area) on the notes page for slide one in the active presentation. (If
you've removed the slide image from the notes page, use Placeholders(1) to
return the notes area.)

ActivePresentation.Slides(1).NotesPage.Shapes.Placeholders(2) _
 .TextFrame.TextRange.InsertAfter "Added Text"

Microsoft Office 97/Visual Basic Programmer's Guide Page 134 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Working with the Selection Object

The Selection object in PowerPoint represents the selection in a document
window. You use methods of the Selection object to cut, copy, delete, or
unselect the selection. You use the Type property of the Selection object to
figure out what type of content is selected (slides, shapes, text, or nothing at
all), and you use the ShapeRange, SlideRange, and TextRange properties to
return only a certain type of selected object.

Note Selectionbased code is inefficient and is usually unnecessary. For
example, you can change the font properties of a text range directly without
having to select the text. If you rely on the macro recorder to supply code for
you, you should rewrite the code it generates to be selectionindependent
wherever possible.

Making a Selection

You can create a selection either manually or by applying the Select method to
the Shape, ShapeRange, Slide, SlideRange, or TextRange object. The
following example selects shapes one and three on slide one in the active
presentation.

ActivePresentation.Slides(1).Shapes.Range(Array(1, 3)).Select

Note You can make a given selection programmatically only if you can make
that same selection manually in the active document window. For example, if
slide two is showing in the active document window, you cannot select shapes
on slide one. Similarly, you cannot make a selection that's inappropriate to the
current view in the active document window. For example, if the active
document window is in slide sorter view, you cannot select a shape or text
range on an individual slide.

Returning the Selection Object

Use the Selection property of the DocumentWindow object to return the
selection. The following example cuts the selection in the active window.

ActiveWindow.Selection.Cut

Returning Shapes, Text, or Slides in a Selection

Use the ShapeRange property of the Selection object to return the
ShapeRange collection that includes all the shapes in the selection. Use the
Item method of the returned ShapeRange object to return a single selected
shape. The following example cuts the third shape in the selection in the active
window.

ActiveWindow.Selection.ShapeRange(3).Cut

Microsoft Office 97/Visual Basic Programmer's Guide Page 135 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Returning Selected Text

If only text is selected, use the TextRange property of the Selection object to
return a TextRange object that represents the selected text. The following
example applies bold formatting to the first three characters in the selected text
in the active window.

ActiveWindow.Selection.TextRange.Characters(1, 3).Font.Bold = True

To get to the text in a selected shape, do the following: return the shape, use
the TextFrame property to return the text area in the shape, and then use the
TextRange property of the text frame to return the text in the shape. The
following example applies bold formatting to the first three characters in the
third shape in the selection in the active window

ActiveWindow.Selection.ShapeRange(3).TextFrame.TextRange _
 .Characters(1, 3).Font.Bold = True

Returning Selected Slides

Use the SlideRange property of the Selection object to return a SlideRange
collection that includes all the selected slides. The following example cuts the
selected slides in the active window.

ActiveWindow.Selection.SlideRange.Cut

Working with the View and SlideShowView
Objects

When you open a file in PowerPoint, you simultaneously create a Presentation
object, which represents the contents of the file; a DocumentWindow object,
which represents the interface between the user and the file in design mode;
and the View object, which represents a container for the contents of the file in
design mode.

When you start a slide show, you create a SlideShowWindow object, which
represents the interface between the user and the file in run mode, and a
SlideShowView object, which represents a container for the contents of the file
in run mode.

Understanding Presentations, Windows, and Views

When you're running PowerPoint and you make changes to what you see on the
screen, you may be making changes to the Presentation object, the
DocumentWindow object, or the View object.

� Changes made to the actual contents of slides — such as by adding,
deleting, or formatting objects — are changes to the presentation and are

Microsoft Office 97/Visual Basic Programmer's Guide Page 136 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

controlled by properties and methods of the Presentation object and the
objects below the Presentation object in the object hierarchy.

� Changes made to the interface that displays the contents — such as by
changing the size of the window or switching blackandwhite display on or
off — are changes to the document window or slide show window and are
controlled by properties and methods of the DocumentWindow or
SlideShowWindow object. These changes don't affect the contents of
the file. Changes to the document window are retained when you switch
document views.

� Changes made to what information is displayed to you — such as whether
you see text and graphics or only graphics, and how big the elements look
on the screen — are changes to the view and are controlled by properties
and methods of the View or SlideShowView objects. These changes
don't affect the contents of the file, and they aren't retained when you
switch views.

Returning the View and SlideShowView Objects

The View object represents the way information is displayed in a document
window. Use the View property of the DocumentWindow object to return a
View object. The following example sets the document window to automatically
adjust (zoom) to fit the dimensions of the application window.

Windows(1).View.ZoomToFit = True

The SlideShowView object represents the way information is displayed in the
slide show window. Use the View property of the SlideShowWindow object to
return a SlideShowView object. The following example runs a slide show of
the active presentation with shortcut keys disabled (the Run method of the
SlideShowSettings object returns a SlideShowWindow object).

ActivePresentation.SlideShowSettings.Run.View.AcceleratorsEnabled = F

The following example sets the pointer color and pointer shape for the second
slide show that's currently running. (There can be only one running slide show
window per presentation, but there can be multiple presentations running slide
shows at the same time.)

With SlideShowWindows(2).View
 .PointerColor.RGB = RGB(255, 0, 0)
 .PointerType = ppSlideShowPointerPen
End With

Navigating in a Slide Show in a Document Window
View or Slide Show Window View

Use the GotoSlide method of the View or SlideShowView object to make a
specific slide the active slide. The following example makes slide three in the
presentation in document window one the active slide in the window.

Microsoft Office 97/Visual Basic Programmer's Guide Page 137 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Windows(1).View.GotoSlide 3

Note that depending on what document view you're in, the term "active slide"
has slightly different meanings. In slide view or note view, the active slide is the
one that's currently displayed in the window. In outline view or slide sorter
view, the active slide is the selected slide.

The following example advances the presentation in slide show window one to
the third slide.

SlideShowWindows(1).View.GotoSlide 3

You can also go to the first slide in a slide show by using the First method or to
the last slide by using the Last method, or you can go to a custom slide show
by using the GotoNamedShow method. For more information about these
methods, see the topics for them in Help.

Pasting Clipboard Contents into a Document Window
View

Use the Paste method to paste the contents of the Clipboard into the active
document window view. The following example copies the selection in window
one to the Clipboard and then copies it into the view in window two. If the
Clipboard contents cannot be pasted into the view in window two — for
example, if you try to paste a shape into slide sorter view — this example fails.

Windows(1).Selection.Copy
Windows(2).View.Paste

The following table shows what you can paste into each view.

Into this view
You can paste the following from the
Clipboard

Slide view or notes page view Shapes, text, or entire slides.

Pasted shapes will be added to the top of the z-
order and won't replace selected shapes.

If one shape is selected, pasted text will be
appended to the shape's text; if text is
selected, pasted text will replace the selection;
if anything else is selected, pasted text will be
placed in it's own text frame.

If you paste a slide from the Clipboard, an
image of the slide will be inserted onto the
slide, master, or notes page as an embedded
object.

Microsoft Office 97/Visual Basic Programmer's Guide Page 138 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

For information about setting the view for a window before pasting the
Clipboard contents into it, see the following section.

Setting or Checking the View Type in a Document
Window

Use the Type property of the View object to see what the active document view
is, and use the ViewType property of the DocumentWindow object to set the
active document view. The following example copies the selection in window
one to the Clipboard, makes sure that window one is in slide view, and then
copies the Clipboard contents into the view in window two.

Windows(1).Selection.Copy
With Windows(2)
 .ViewType = ppViewSlide
 .View.Paste
End With

Returning the Slide That's Currently Showing in a
Document Window View or Slide Show Window View

Use the Slide property to return the Slide object that represents the slide that's
currently displayed in the specified slide show window view or document
window view. The following example places on the Clipboard a copy of the slide
that's currently displayed in slide show window one.

SlideShowWindows(1).View.Slide.Copy

Tip If the currently displayed slide is from an embedded presentation, you can
use the Parent property of the Slide object returned by the Slide property to
return the embedded presentation that contains the slide. (The Presentation
property of the SlideShowWindow object or DocumentWindowobject returns
the presentation in which the window was created, not the embedded
presentation.)

Outline view Text or entire slides.

A pasted slide will be inserted before the slide
that contains the insertion point.

You cannot paste shapes into outline view.

Slide sorter view Entire slides.

A pasted slide will be inserted at the insertion
point or after the last slide in the selection.

You cannot paste shapes or text into slide
sorter view.

Microsoft Office 97/Visual Basic Programmer's Guide Page 139 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Controlling How Objects Behave During a
Slide Show

The entire drawing layer on a slide is represented by the Shapes collection, and
each object on a slide — whether it's a placeholder, AutoShape, or OLE object —
is represented by a Shape object. Using properties and methods of the Shapes
collection, you can add objects to slides and gain access to the individual
objects on a slide. Using properties and methods of the Shape object, you
cancontrol the shape's appearance, the text or OLE object it can contain, and
the way it behaves during a slide show. This section discusses the properties
and methods that control how a shape behaves during a slide show. For
information about the properties and methods that control other attributes and
behavior of shapes, see Chapter 10, "Shapes and the Drawing Layer."

Controlling How a Shape Becomes Animated During
a Slide Show

The AnimationSettings object contains properties and methods that control
how and when a shape appears on a specific slide during a slide show. The
following example sets shape two on slide one in the active presentation to
become animated automatically after five seconds.

With ActivePresentation.Slides(1).Shapes(2).AnimationSettings
 .AdvanceMode = ppAdvanceOnTime
 .AdvanceTime = 5
 .TextLevelEffect = ppAnimateByAllLevels
 .Animate = True
End With

When you work with the properties of the AnimationSettings object, it's
important to keep in mind how individual properties work with each other and
with the AdvanceMode property of the SlideShowSettings object.

You won't see the effects of setting any properties of the AnimationSettings
object unless the specified shape is animated — that is, if the shape doesn't
appear on the slide when the slide is initially displayed during a slide show but
appears later. For a shape to be animated, the TextLevelEffect property must
be set to something other than ppAnimateLevelNone and the Animate
property must be set to True.

To put into effect animation timings, which determine when the shape will
appear on the slide during a slide show, you must not only assign a number of
seconds to the AdvanceTime property, but you must also set the
AdvanceMode property of the SlideShowSettings object to
ppAdvanceOnTime and set the AdvanceMode property to
ppSlideShowUseSlideTimings.

You can use the AfterEffect property to specify what happens to a shape after
it becomes animated. Obviously, unless a shape gets animated and at least one
other shape on the slide gets animated after it, you won't see any of the
aftereffects you set for the shape. Additionally, unless the AfterEffect property

Microsoft Office 97/Visual Basic Programmer's Guide Page 140 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

is set to ppAfterEffectDim, you won't see the effect of the DimColor property
setting.

Controlling How a Shape Responds to Mouse Actions
During a Slide Show

The ActionSettings collection for a shape contains two ActionSetting
objects — one that contains properties and methods that control how a shape
responds when it's clicked during a slide show (corresponds to the settings on
the Mouse Click tab in the Action Settings dialog box), and another that
contains properties and methods that control how a shape responds when the
mouse pointer passes over it during a slide show (corresponds to the settings
on the Mouse Over tab in the Action Settings dialog box). The following
example specifies that when shape three on slide one in the active presentation
is clicked during a slide show, the shape's color is momentarily inverted, the
Applause sound plays, and the slide show returns to the first slide.

With ActivePresentation.Slides(1).Shapes(3).ActionSettings(ppMouseCli
 .Action = ppActionFirstSlide
 .SoundEffect.Name = "applause"
 .AnimateAction = True
End With

Note that different action settings are available for different types of shapes (for
example, you can use the ActionVerb property only for OLE objects). Thus, for
any given shape, you should use only properties that correspond to the settings
available in the user interface when the shape is selected.

If you set a property of the ActionSetting object but don't see the changes you
made reflected in the slide show, make sure that you've set the correct value for
the Action property, as shown in the following table.

If you use this
property To do this

Set the Action property to
this value to put the
change into effect

Hyperlink Set properties for the
hyperlink that will be
followed in response to a
mouse action on the shape
during a slide show

ppActionHyperlink

Run Return or set the name of
the program to run in
response to a mouse
action on the shape during
a slide show

ppActionRunProgram

Run Return or set the name of
the macro to be run in
response to a mouse
action on the shape during
a slide show

ppActionRunMacro

Microsoft Office 97/Visual Basic Programmer's Guide Page 141 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Controlling How a Media Clip Plays During a Slide
Show

The PlaySettings object, which you return by using the PlaySettings property
of the AnimationSettings object, contains properties and methods that control
how and when a media clip plays during a slide show. The following example
inserts a movie named "Clock.avi" into slide one in the active presentation, sets
it to play automatically after the previous animation or slide transition, specifies
that the slide show continue while the movie plays, and specifies that the movie
object be hidden during a slide show except when it's playing.

Set clockMovie = ActivePresentation.Slides(1).Shapes.AddMediaObject _
 (FileName:="C:\WINNT\clock.avi", Left:=20, Top:=20)
With clockMovie.AnimationSettings.PlaySettings
 .PlayOnEntry = True
 .PauseAnimation = False
 .HideWhileNotPlaying = True
End With

Depending on whether you inserted the media clip as an OLE object (using the
Object command on the Insert menu, or using the AddOLEObject method) or
as a native media object (using the Movies and Sounds menu or the
AddMediaObject method), different properties of the PlaySettings object will
apply to the clip. This mimics the way different options are available for native
media objects and OLE objects on the Play Settings tab in the Custom
Animation dialog box (Slide Show menu).

The preferred way to insert media clips is as native media objects, because
native movies and sounds don't require the use of the Windows Media Player
and therefore respond faster when they're clicked or activated. Most of the
properties of the PlaySettings object apply only to native media clips. The
ActionVerb property, which corresponds to the options listed in the Object box
on the PlaySettings tab in the Custom Animation dialog box, is the only
property of the PlaySettings object that doesn't apply to native media objects.

To determine whether a particular media clip is a native media object, check to
see whether the value of the Type property of the Shape object that contains
the clip is msoMedia. Use the MediaType property of the Shape object to
determine whether the clip is a sound or a movie. The following example sets all
native sound objects on slide one in the active presentation to loop during a
slide show until they're manually stopped.

Dim so As Shape

ActionVerb Set the OLE verb that will
be invoked in response to
a mouse action on the
shape during a slide show

ppActionOLEVerb

SlideShowName Set the name of the
custom slide show that will
be run in response to a
mouse action on the shape
during a slide show

ppActionNamedSlideShow

Microsoft Office 97/Visual Basic Programmer's Guide Page 142 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

For Each so In ActivePresentation.Slides(1).Shapes
 If so.Type = msoMedia Then
 If so.MediaType = ppMediaTypeSound Then
 so.AnimationSettings.PlaySettings.LoopUntilStopped = True
 End If
 End If
Next

Contents
� Working with the Application Object
� Working with the Document Object
� Working with the Range Object
� Working with the Selection Object
� Working with the Find and Replacement Objects
� Working with Table, Column, Row, and Cell Objects
� Working with Other Common Objects
� Determining Whether an Object Is Valid
� Modifying Word Commands
� Working with Events
� Using Auto Macros
� Using Automation

Visual Basic supports a set of objects that correspond directly to elements in
Microsoft Word 97, most of which you're familiar with from the user interface.
For example, the Document object represents an open document, the
Bookmark object represents a bookmark in a document, and the Selection
object represents the selection in a document window pane. Every type of
element in Word — documents, tables, paragraphs, bookmarks, fields, and so
on — can be represented by an object in Visual Basic. To automate tasks in
Word, use methods and properties of these objects.

For general information about understanding and navigating the object models
in Microsoft Office 97, see Chapter 2, "Understanding Object Models." The object
model in Microsoft Word 97 is extensive, encompassing approximately 180
objects. To view a graphical representation of the Word object model, see
"Microsoft Word Objects" in Help. For a detailed description of a specific object,
click the name of the object on the diagram, or search for the specific object
name in the Help index.

C H A P T E R 7 Microsoft Office 97/Visual Basic Programmer's Guide

Microsoft Word Objects

How Do I Display Visual Basic Help for Word?

To use Visual Basic Help for Word, you must click Custom during Setup
and select the Online Help for Visual Basic check box for Word.
Otherwise, Visual Basic Help won't be installed. If you've already
installed Word, you can run Setup again to install Visual Basic Help.

Microsoft Office 97/Visual Basic Programmer's Guide Page 143 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Working with the Application Object

When you start a Word session, you automatically create an Application
object. You use properties or methods of the Application object to control or
return applicationwide attributes, to control the appearance of the application
window, and to get to the rest of the Word object model. Use the Application
property to return the Word Application object. The following example switches
the view to print preview.

Application.PrintPreview = True

Some properties of the Application object control the appearance of the
application. For example, if the DisplayStatusBar property is True, the status
bar is visible, and if WindowState property is wdWindowStateMaximize, the
application window is maximized. The following example sets the size of the
application window on the screen.

With Application
 .WindowState = wdWindowStateNormal
 .Height = 450
 .Width = 600
End With

Properties of the Application object also provide access to objects lower in the
object hierarchy, such as the Windows collection (representing all currently
open windows) and the Documents collection (representing all currently open
documents). You use properties, which are sometimes called accessors, to move
down through the object hierarchy from the toplevel Application object to the
lower levels (Document, Window, Selection, and so forth). You can use
either of following examples to open MyDoc.doc.

Application.Documents.Open FileName:="C:\DOCS\MYDOC.DOC"
Documents.Open FileName:="C:\DOCS\MYDOC.DOC"

Because the Documents property is global, the Application property is
optional. Global properties and methods don't need the Application object
qualifier. To view the list of global properties and methods in the Object
Browser, click <globals> in the Classes box. The global items are listed in the
Members of box.

Note The Options object includes a number of properties that control the
global behavior of Word. Many of the properties for the Options object

To see the contents and index of Visual Basic Help for Word, click
Contents and Index on the Help menu in the Visual Basic Editor. On
the Contents tab in the Help Topics dialog box, doubleclick "Microsoft
Word Visual Basic Reference," and then doubleclick "Shortcut to Microsoft
Word Visual Basic Reference." The Help Topics dialog box should
reappear, displaying the contents and index for Visual Basic Help for
Word.

Microsoft Office 97/Visual Basic Programmer's Guide Page 144 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

correspond to items in the Options dialog box (Tools menu). Use the Options
property of the Application object to return the Options object. The following
example sets three applicationwide options (because the Options property is
global, the Application property isn't needed in this example).

With Application.Options
 .AllowDragAndDrop = True
 .ConfirmConversions = False
 .MeasurementUnit = wdPoints
End With

Working with the Document Object

When you open or create a file in Word, you create a Document object. You
use properties and methods of the Document object or the Documents
collection to open, create, save, activate, and close files.

Returning the Document Object

You can return any open document as a Document object, using the syntax
Documents(index), where index is the document's name or index number. In
the following example, the variable myDoc contains a Document object that
refers to the open document named "Report.doc."

Set myDoc = Documents("Report.doc")

The index number represents the position of the document in the Documents
collection. In the following example, the variable myDoc contains a Document
object that refers to the first document in the Documents collection.

Set myDoc = Documents(1)

Note Because the index number of a particular document can change when
you add or close documents, it's best to use the document name to index a
Document object in the Documents collection.

In addition to referring to a document by either its name or index number, you
can use the ActiveDocument property to return a Document object that
refers to the active document (the document with the focus). The following
example displays the name of the active document; if there are no documents
open, the example displays a message.

If Documents.Count >= 1 Then
 MsgBox ActiveDocument.Name
Else
 MsgBox "No documents are open"
End If

Opening Documents

Microsoft Office 97/Visual Basic Programmer's Guide Page 145 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

To open an existing document, use the Open method. The Open method
applies to the Documents collection, which you return using the Documents
property. The following example opens the file Test.doc (from the current
folder) and turns on change tracking.

Set myDoc = Documents.Open(FileName:="TEST.DOC")
myDoc.TrackRevisions = True

Notice that the return value of the Open method in the preceding example is a
Document object that represents the document that was just opened. The file
name in the example doesn't contain a path; therefore, the file is assumed to be
in the current folder. This is guaranteed to cause a runtime error, because as
soon as the user makes a different folder the current folder, Visual Basic can no
longer find the file. You can, however, ensure that the correct file is opened by
specifying the complete path, as shown in the following table.

If your macro is intended for only one file system, you can hardcode the path
separator ("\" or ":") in the FileName argument, as shown in the preceding
table. The following example shows filesystemindependent code you can use to
open Sales.doc, assuming that Sales.doc has been saved in the Word program
folder.

programPath = Options.DefaultFilePath(wdProgramPath)
Documents.Open FileName:=programPath & Application.PathSeparator & "S

The PathSeparator property returns the correct separator character for the
current file system (for example, "\" for MSDOS/Windows FAT or ":" for the
Macintosh). The DefaultFilePath property returns folder locations such as the
paths for the document folder, the program folder, and the current folder.

An error occurs if the specified file name doesn't exists in either the current
folder (if a path isn't specified) or the specified folder (if a path is specified). The
following example uses properties and methods of the FileSearch object to
determine whether a file named "Test.doc" exists in the user's default document
folder. If the file is found (FoundFiles.Count = 1), it's opened; otherwise, a
message is displayed.

defaultDir = Options.DefaultFilePath(wdDocumentsPath)
With Application.FileSearch
 .FileName = "Test.doc"
 .LookIn = defaultDir
 .Execute
 If .FoundFiles.Count = 1 Then
 Documents.Open FileName:=defaultDir & Application.PathSeparat
 Else
 MsgBox "Test.doc file was not found"

Operating system FileName

Windows FileName:="C:\Documents\Temporary
File.doc"

Macintosh FileName:="Hard
Drive:Documents:Temporary File"

Microsoft Office 97/Visual Basic Programmer's Guide Page 146 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

 End If
End With

Instead of hardcoding the FileName argument of the Open method, you may
want to allow a user to select a file to open. Use the Dialogs property with the
wdDialogFileOpen constant to return a Dialog object that refers to the Open
dialog box (File menu), as in the following example. The Show method displays
and executes actions performed in the Open dialog box.

Dialogs(wdDialogFileOpen).Show

The Display method displays the specified dialog box without doing anything
further. The following example checks the value returned by the Display
method. If the user clicks OK to close the dialog box, the value –1 value is
returned and the selected file, whose name is stored in the variable fSelected,
is opened.

Set dlg = Dialogs(wdDialogFileOpen)
aButton = dlg.Display
fSelected = dlg.Name
If aButton = -1 Then
 Documents.Open FileName:=fSelected
End If

For more information about displaying Word dialog boxes, see "Displaying built-
in Word dialog boxes" in Help.

To determine whether a particular document is open, you can enumerate the
Documents collection by using a For Each...Next statement. The following
example activates the document named "Sample.doc" if it's already open; if it's
not currently open, the example opens it.

docFound = True
For Each aDoc In Documents
 If InStr(1, aDoc.Name, "sample.doc", 1) Then
 aDoc.Activate
 Exit For
 Else
 docFound = False
 End If
Next aDoc
If docFound = False Then Documents.Open _
 FileName:="C:\Documents\Sample.doc"

Use the Count property to determine how many documents are currently open.
The Count property applies to the Documents collection, which you return
using the Documents property. The following example displays a message if
there are no documents open.

If Documents.Count = 0 Then MsgBox "No documents are open"

Creating and Saving Documents

Microsoft Office 97/Visual Basic Programmer's Guide Page 147 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

To create a new document, apply the Add method to the Documents
collection. The following example creates a new document.

Documents.Add

The Add method returns the document that was just created as a Document
object. When you add a document, you can set the return value of the Add
method to an object variable so that you can refer to the new document in your
code. The following example creates a new document and sets its top margin to
1.25 inches.

Dim myDoc As Document
Set myDoc = Documents.Add
myDoc.PageSetup.TopMargin = InchesToPoints(1.25)

To save a new document for the first time, use the SaveAs method with a
Document object. The following example saves the active document as
"Temp.doc" in the current folder.

ActiveDocument.SaveAs FileName:="Temp.doc"

After a document is saved, you can use its document name to get to the
Document object. The following example creates a new document and
immediately saves it as "1996 Sales.doc." The example then uses the new name
to index the document in the Documents collection and adds a table to the
document.

Documents.Add.SaveAs FileName:="1996 Sales.doc"
Documents("1996 Sales.doc").Tables.Add _
 Range:=Selection.Range, NumRows:=2, NumColumns:=4

To save changes to an existing document, use the Save method with a
Document object. The following instruction saves the document named
"Sales.doc."

Documents("Sales.doc").Save

If you use the Save method with an unsaved document or template, the Save
As dialog box will prompt the user for a file name. To save all open documents,
apply the Save method to the Documents collection. The following example
saves all open documents without prompting the user for their file names.

Documents.Save NoPrompt:=True

Activating a Document

To make a different document the active document, apply the Activate method
to a Document object. The following example activates the open document

Microsoft Office 97/Visual Basic Programmer's Guide Page 148 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

(MyDocument.doc).

Documents("MyDocument.doc").Activate

The following example opens two documents and then activates the first one
(Sample.doc).

Set Doc1 = Documents.Open(FileName:="C:\Documents\Sample.doc")
Set Doc2 = Documents.Open(FileName:="C:\Documents\Other.doc")
Doc1.Activate

Printing a Document

To print a document, apply the PrintOut method to a Document object, as
shown in the following example.

ActiveDocument.PrintOut

To programmatically set print options that you'd otherwise set in the Print
dialog box (File menu), use the arguments of the PrintOut method. You can
use properties of the Options object to set print options that you'd otherwise
set on the Print tab in the Options dialog box (Tools menu). The following
example sets the active document to print hidden text and then prints the first
three pages.

Options.PrintHiddenText = True
ActiveDocument.PrintOut Range:=wdPrintFromTo, From:="1", To:="3"

Closing Documents

To close a document, apply the Close method to a Document object. The
following example closes the document named "Sales.doc."

Documents("Sales.doc").Close

If there are changes in the document, Word displays a message asking whether
the user wants to save changes. You can prevent this prompt from appearing by
using the wdDoNotSaveChanges or wdSaveChanges constant with the
SaveChanges argument. The following example saves and closes Sales.doc.

Documents("Sales.doc").Close SaveChanges:=wdSaveChanges

To close all open documents, apply the Close method to the Documents
collection. The following example closes all documents without saving changes.

Documents.Close SaveChanges:=wdDoNotSaveChanges

Microsoft Office 97/Visual Basic Programmer's Guide Page 149 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Accessing Objects in a Document

From the Document object, you have access to a number of properties and
methods that return objects. To view a graphical representation of the objects
available from the Document object, see "Microsoft Word Objects
(Documents)" in Help. For example, the Tables property, which returns a
collection of Table objects, is available from the Document object. Use the
Count property with a collection object to determine how many items there are
in the collection. The following example displays a message that indicates how
many tables there are in the active document.

MsgBox ActiveDocument.Tables.Count & " table(s) in this document"

Use Tables(index), where index is the index number, to return a single Table
object. In the following example, myTable refers to the first table in the
document named "Sales.doc."

Set myTable = Documents("Sales.doc").Tables(1)

Information about returning a particular object is available in the object topic
itself (for example, "Table Object") and in the corresponding collection object
topic (for example, "Tables Collection Object") in Help.

Adding Objects to a Document

You can add objects, such as a footnotes, comments, or tables, to a document
using the Add method with a collection object accessed from the Document
object. For example, the following instruction adds a 3x3 table at the location
specified by the myRange variable (myRange is an object variable that contains a
Range object).

ActiveDocument.Tables.Add Range:=myRange, NumRows:=3, NumColumns:=3

This following example adds a footnote at the location specified by the variable
myRange.

ActiveDocument.Footnotes.Add Range:=myRange, Text:="The Willow Tree"

For a list of collection objects that support the Add method, see "Add Method"
in Help.

Working with the Range Object

A common task when using Visual Basic is to specify an area in a document and
then do something with it, such as insert text or apply formatting. For example,
you may want to write a macro that locates a word or phrase within a portion of
a document. You can use a Range object to represent the portion of the
document you want to search for the specified word or phrase. After you identify

Microsoft Office 97/Visual Basic Programmer's Guide Page 150 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

the Range object, you can apply methods and properties of this object to
modify the contents of the range.

A Range object represents a contiguous area in a document. Each Range
object is defined by a starting character position and an ending character
position. Similar to the way you use bookmarks in a document, you use Range
objects in Visual Basic procedures to identify specific portions of a document. A
Range object can be as small as the insertion point or as large as the entire
document. However, unlike a bookmark, a Range object exists only while the
procedure that defined it is running.

Range objects are independent of the selection; that is, you can define and
modify a range without changing the selection. You can also define multiple
ranges in a document, while there is only one selection per document pane.

The Start, End, and StoryType properties uniquely identify a Range object.
The Start and End properties return or set the starting and ending character
positions of the Range object. The character position at the beginning of each
story is 0 (zero), the position after the first character is 1, and so on. There are
11 different story types represented by the WdStoryType constants of the
StoryType property. For example, if a Range object is in the footnote area, the
StoryType property returns wdFootnotesStory. For more information about
stories, see "Working with Stories" later in this section.

Using the Range Object Instead of the Selection
Object

The macro recorder will often create a macro that uses the Selection property
to manipulate the Selection object. However, you can usually accomplish the
same task with fewer instructions by using one or more Range objects. The
following example was created using the macro recorder. This macro applies
bold formatting to the first two words in the document.

Selection.HomeKey Unit:=wdStory
Selection.MoveRight Unit:=wdWord, Count:=2, Extend:=wdExtend
Selection.Font.Bold = wdToggle

The following example accomplishes the same task without using the Selection
object.

ActiveDocument.Range(Start:=0, End:=ActiveDocument.Words(2).End).Bold

The following example applies bold formatting to the first two words in the
document, and then it inserts a new paragraph.

Selection.HomeKey Unit:=wdStory
Selection.MoveRight Unit:=wdWord, Count:=2, Extend:=wdExtend
Selection.Font.Bold = wdToggle
Selection.MoveRight Unit:=wdCharacter, Count:=1
Selection.TypeParagraph

The following example accomplishes the same task as the preceding example

Microsoft Office 97/Visual Basic Programmer's Guide Page 151 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

without using the Selection object.

Set myRange = ActiveDocument.Range(Start:=0, End:=ActiveDocument.Word
myRange.Bold = True
myRange.InsertParagraphAfter

Both of the preceding examples change the formatting in the active document
without changing the selection. In most cases, Range objects are preferred
over the Selection object for the following reasons:

� You can define and use multiple Range objects, whereas you can only
have one Selection object per document window.

� Manipulating Range objects doesn't change the selected text.

� Manipulating Range objects is faster than working with the selection.

Using the Range Method to Return a Range Object

You use the Range method to create a Range object in the specified document.
The Range method (which is available from the Document object) returns a
Range object located in the main story, with a given starting point and ending
point. The following example creates a Range object that's assigned to the
variable myRange.

Set myRange = ActiveDocument.Range(Start:=0, End:=10)

In the preceding example, myRange represents the first 10 characters in the
active document. You can see that the Range object has been created when
you apply a property or method to the Range object stored in the myRange
variable. The following example applies bold formatting to the first 10
characters in the active document.

Set myRange = ActiveDocument.Range(Start:=0, End:=10)
myRange.Bold = True

When you need to refer to a Range object multiple times, you can use the Set
statement to set a variable equal to the Range object. However, if you need to
perform only a single action on a Range object, there's no need to store the
object in a variable. You can achieve the same results by using just one
instruction that identifies the range and changes the Bold property, as in the
following example.

ActiveDocument.Range(Start:=0, End:=10).Bold = True

Like a bookmark, a range can span a group of characters or mark a location in a
document. In the following example, the starting and ending points of the
Range object are the same, and the range doesn't include any text. The
example inserts text at the beginning of the active document.

Microsoft Office 97/Visual Basic Programmer's Guide Page 152 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

ActiveDocument.Range(Start:=0, End:=0).InsertBefore Text:="Hello "

You can define the beginning and ending points of a range by using the
character position numbers as shown in the preceding example, or by using the
Start and End properties with the Selection, Bookmark, or Range object.
The following example creates a Range object that refers to the third and
fourth sentences in the active document.

Set myDoc = ActiveDocument
Set myRange = myDoc.Range(Start:=myDoc.Sentences(3).Start, _
 End:=myDoc.Sentences(4).End)

Tip A Range object doesn't have a visual representation in a document. You
can, however, use the Select method to select a Range object to ensure that
the Range object refers to the correct range of text. The Range object in the
following example refers to the first three paragraphs in the active document.
After this macro has been run, the selection indicates the range of text that was
contained in the variable aRange.

Set aRange = ActiveDocument.Range(Start:=0, _
 End:=ActiveDocument.Paragraphs(3).Range.End)
aRange.Select

Using the Range Property to Return a Range Object

The Range property is available from multiple objects — for instance,
Paragraph, Bookmark, Endnote, and Cell — and is used to return a Range
object. The following example returns a Range object that refers to the first
paragraph in the active document.

Set myRange = ActiveDocument.Paragraphs(1).Range

After you've created a reference to a Range object, you can use any of its
properties or methods to modify the range. The following example copies the
first paragraph in the active document.

Set myRange = ActiveDocument.Paragraphs(1).Range
myRange.Copy

This following example copies the first row in table one in the active document.

ActiveDocument.Tables(1).Rows(1).Range.Copy

The following example displays the text marked by the first bookmark in the
active document. The Range property is available from the Bookmark object.

MsgBox ActiveDocument.Bookmarks(1).Range.Text

Microsoft Office 97/Visual Basic Programmer's Guide Page 153 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

If you need to apply numerous properties or methods to the same Range
object, you can use the With…End With statement. The following example
formats the text in the first paragraph in the active document.

Set myRange = ActiveDocument.Paragraphs(1).Range
With myRange
 .Bold = True
 .ParagraphFormat.Alignment = wdAlignParagraphCenter
 .Font.Name = "Arial"
End With

For additional examples of returning Range objects, see "Range Property" in
Help.

Modifying a Portion of a Document

Visual Basic includes objects you can use to modify the following types of
document elements: characters, words, sentences, paragraphs, and sections.
The following table includes the properties that correspond to these document
elements and the objects they return.

When you use these properties without an index, a collection with the same
name is returned — for example, the Paragraphs property returns the
Paragraphs collection. However, if you identify an item within a collection by
index, the object in the second column of the preceding table is returned — for
example, Words(1) returns a Range object. You can use any of the range
properties or methods to modify a Range object, as in the following example,
which copies the first word in the selection to the Clipboard.

Selection.Words(1).Copy

The items in the Paragraphs and Sections collections are Paragraph and
Section objects, respectively, rather than Range objects. However, the Range
property (which returns a Range object) is available from both the Paragraph
and Section objects. The following example copies the first paragraph in the
active document to the Clipboard.

ActiveDocument.Paragraphs(1).Range.Copy

All the document element properties in the preceding table are available from

This expression Returns this object

Words(index) Range

Characters(index) Range

Sentences(index) Range

Paragraphs(index) Paragraph

Sections(index) Section

Microsoft Office 97/Visual Basic Programmer's Guide Page 154 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

the Document, Selection, and Range objects, as shown in the following three
examples.

This example sets the case of the first word in the active document.

ActiveDocument.Words(1).Case = wdUpperCase

This example sets the bottom margin of the first selected section to 0.5 inch.

Selection.Sections(1).PageSetup.BottomMargin = InchesToPoints(0.5)

This example doublespaces the text in the active document (the Content
property returns a Range object that represents the main document story).

ActiveDocument.Content.ParagraphFormat.Space2

Modifying a Group of Document Elements

To modify a range of text that consists of a group of document elements
(characters, words, sentences, paragraphs, or sections), you can create a
Range object that includes the document elements. Using the Start and End
properties with a Range object, you can create a new Range object that refers
to a group of document elements. The following example creates a Range
object (myRange) that refers to the first three words in the active document and
then changes the font for these words to Arial.

Set Doc = ActiveDocument
Set myRange = Doc.Range(Start:=Doc.Words(1).Start, End:=Doc.Words(3).
myRange.Font.Name = "Arial"

The following example creates a Range object beginning at the start of the
second paragraph and ending after the fourth paragraph.

Set myDoc = ActiveDocument
Set myRange = myDoc.Range(Start:=myDoc.Paragraphs(2).Range.Start, _

End:=myDoc.Paragraphs(4).Range.End)

The following example creates a Range object (aRange) beginning at the start
of the second paragraph and ending after the third paragraph. The
ParagraphFormat property is used to access paragraph formatting properties
such as SpaceBefore and SpaceAfter.

Set Doc = ActiveDocument
Set aRange = Doc.Range(Start:=Doc.Paragraphs(2).Range.Start, _

End:=Doc.Paragraphs(3).Range.End)
With aRange.ParagraphFormat
 .Space1
 .SpaceAfter = 6
 .SpaceBefore = 6
End With

Microsoft Office 97/Visual Basic Programmer's Guide Page 155 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Returning or Setting the Text in a Range

Use the Text property to return or set the contents of a Range object. The
following example returns the first word in the active document.

strText = ActiveDocument.Words(1).Text

The following example changes the first word in the active document to "Hello."

ActiveDocument.Words(1).Text = "Hello"

Use the InsertAfter or InsertBefore method to insert text before or after a
range. The following example inserts text at the beginning of the second
paragraph in the active document.

ActiveDocument.Paragraphs(2).Range.InsertBefore Text:="In the beginni

After you use either the InsertAfter or InsertBefore method, the range
expands to include the new text. You can, however, collapse the range to its
beginning or ending point by using the Collapse method. The following
example inserts the word "Hello" before the existing text and then collapses the
range to its beginning (before the word "Hello").

With ActiveDocument.Paragraphs(2).Range
 .InsertBefore Text:="Hello "
 .Collapse Direction:=wdCollapseStart
End With

Formatting the Text in a Range

Use the Font property to get to characterformatting properties and methods,
and use the ParagraphFormat property to get to paragraphformatting
properties and methods. The following example sets character and paragraph
formatting for the text in the first paragraph in the active document.

With ActiveDocument.Paragraphs(1).Range.Font
 .Name = "Times New Roman"
 .Size = 14
 .AllCaps = True
End With
With ActiveDocument.Paragraphs(1).Range.ParagraphFormat
 .LeftIndent = InchesToPoints(0.5)
 .Space1
End With

Redefining a Range Object

Use the SetRange method to redefine an existing Range object. The following
example defines myRange as the current selection. The SetRange method

Microsoft Office 97/Visual Basic Programmer's Guide Page 156 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

redefines myRange so that it refers to the current selection plus the next 10
characters.

Set myRange = Selection.Range
myRange.SetRange Start:=myRange.Start, End:=myRange.End + 10

For additional information about and examples of redefining a Range object,
see "SetRange Method" in Help.

You can also redefine a Range object by changing the values of the Start and
End properties, or by using the MoveStart or MoveEnd methods. The
following example redefines myRange so that it refers to the current selection
plus the next 10 characters.

Set myRange = Selection.Range
myRange.End = myRange.End + 10

The following example uses the MoveEnd method to extend myRange to include
the next paragraph.

Set myRange = ActiveDocument.Paragraphs(2)
myRange.MoveEnd Unit:=wdParagraph, Count:=1

Looping Through a Range of Paragraphs

There are several different ways to loop through the paragraphs in a range. This
section includes examples of using the For Each...Next statement and the
Next property and method to loop through a range of paragraphs. You can use
these same techniques to loop through characters, words, or sentences in a
range.

Using the For Each...Next Statement

The recommended way to loop through the paragraphs in a range is to use the
For Each...Next statement, which is also the recommended way to loop on the
elements in a collection. The following example loops through the first five
paragraphs in the active document, adding text before each paragraph.

Set myDoc = ActiveDocument
Set myRange = myDoc.Range(Start:=myDoc.Paragraphs(1).Range.Start, _
 End:=myDoc.Paragraphs(5).Range.End)
For Each para In myRange.Paragraphs
 para.Range.InsertBefore "Question:" & vbTab
Next para

Suppose that you want to modify this code to loop through a range of
paragraphs that a user selected. You can use the Selection property to refer to
the paragraphs in the selection. The following example loops through the
paragraphs in the selection, removing bold formatting.

For Each para In Selection.Paragraphs

Microsoft Office 97/Visual Basic Programmer's Guide Page 157 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

 para.Range.Bold = False
Next para

Using the Next Property or Method

You can also use the Next property and method to loop through a range of
paragraphs. The following example shows how you can loop through a range of
words and increase the size of each word by 1 point. The example also uses the
Next method to redefine myRange to represent the next word.

Set myRange = ActiveDocument.Words(1)
For i = 1 To 5
 myRange.Font.Size = myRange.Font.Size + i
 Set myRange = myRange.Next(Unit:=wdWord, Count:=1)
Next i

The following example loops through a range of paragraphs and changes the
range's alignment from centered to left aligned. The example also uses the
Next property to redefine myRange to represent the next paragraph.

Set myRange = ActiveDocument.Paragraphs(1).Range
For i = 1 To 5
 If myRange.Paragraphs(1).Alignment = wdAlignParagraphCenter Then
 myRange.Paragraphs(1).Alignment = wdAlignParagraphLeft
 End If
 Set myRange = myRange.Paragraphs(1).Next.Range
Next i

Assigning Ranges

There are several ways to assign an existing Range object to a variable. In the
following examples, the variables Range1 and Range2 refer to Range objects.
The instructions in the examples assign the first and second words in the active
document to the variables Range1 and Range2, respectively.

Set Range1 = ActiveDocument.Words(1)
Set Range2 = ActiveDocument.Words(2)

Setting a Range Object Variable Equal to Another Range
Object Variable

The following example creates the variable Range2 and assigns it to the same
range as Range1.

Set Range2 = Range1

You now have two variables that represent the same range. When you
manipulate the starting point, the ending point, or the text of Range2, your
changes affect Range1 as well, and vice versa.

Microsoft Office 97/Visual Basic Programmer's Guide Page 158 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

The following example assigns the value of the default property of Range1 (the
Text property) to the default property of Range2. The code in this example is
equivalent to Range2.Text = Range1.Text, which doesn't change what the
Range objects actually represent; the only thing that's changed is the contents
(text) of Range2.

Range2 = Range1

The two ranges (Range2 and Range1) have the same contents as one another,
but they may point to different locations in the document, or even to different
documents.

Using the Duplicate Property

The following example creates a new, duplicated Range object, Range2, which
has the same starting point, ending point, and text as Range1.

Set Range2 = Range1.Duplicate

If you change the starting or ending point of Range1, this change doesn't affect
Range2, and vice versa. However, because these two ranges point to the same
location in the document, changing the text in one range changes the text in
the other range as well.

Working with Stories

A story is a document area that contains a range of text distinct from other
areas of text in that document. For example, if a document includes body text,
footnotes, and headers, it contains a main text story, a footnotes story, and a
headers story. There are 11 different types of stories you can have in a
document, corresponding to the following WdStoryType constants:
wdCommentsStory, wdEndnotesStory, wdEvenPagesFooterStory,
wdEvenPagesHeaderStory, wdFirstPageFooterStory,
wdFirstPageHeaderStory, wdFootnotesStory, wdMainTextStory,
wdPrimaryFooterStory, wdPrimaryHeaderStory, and wdTextFrameStory.

Use the StoryType property to return the story type for the specified range,
selection, or bookmark. The following example closes the footnote pane in the
active window if the selection is contained in the footnote story.

ActiveWindow.View.Type = wdNormalView
If Selection.StoryType = wdFootnotesStory Then ActiveWindow.ActivePan

The StoryRanges collection contains the first story range for each story type
available in a document. Use the NextStoryRange method to return
subsequent stories. The following example searches each story in the active
document for the text "Microsoft Word." The example also applies italic
formatting to any instances of this text that it finds.

For Each myStoryRange In ActiveDocument.StoryRanges

Microsoft Office 97/Visual Basic Programmer's Guide Page 159 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

 myStoryRange.Find.Execute FindText:="Microsoft Word", Forward:=Tr
 While myStoryRange.Find.Found
 myStoryRange.Italic = True
 myStoryRange.Find.Execute FindText:="Microsoft Word", _
 Forward:=True, Format:=True
 Wend
 While Not (myStoryRange.NextStoryRange Is Nothing)
 Set myStoryRange = myStoryRange.NextStoryRange
 myStoryRange.Find.Execute FindText:="Microsoft Word", Forward
 While myStoryRange.Find.Found
 myStoryRange.Italic = True
 myStoryRange.Find.Execute FindText:="Microsoft Word", _
 Forward:=True, Format:=True
 Wend
 Wend
Next myStoryRange

Working with the Selection Object

When you work on a document in Word, you usually select text and then
perform an action, such as formatting existing text or typing new text. In Visual
Basic, it's usually not necessary to select text before modifying it; instead, you
create and manipulate a Range object that refers to a specific portion of the
document. However, when you want your code to respond to or change the
selection, you can do so with the Selection object.

Use the Selection property to return the Selection object. There can only be
one Selection object per pane in a document window, and only one Selection
object can be active at any given time. The selection can either encompass an
area in the document or be collapsed to an insertion point. The following
example changes the paragraph formatting of the paragraphs in the selection.

Selection.Paragraphs.SpaceBefore = InchesToPoints(0.25)

The Selection property is available from the Application, Window, and Pane
objects. If you use the Selection property with the Application object, the
Selection object refers to the active selection. The following example inserts
text after the selection (because Selection is a global property, the
Application property isn't included).

Selection.InsertAfter Text:="Next Text"

You can also use the Selection property with a Window or Pane object to
return a Selection object in a particular window or window pane. The following
example uses the Selection property with a Window object to insert text into
the document window named "Document2."

Windows("Document2").Selection.InsertAfter Text:="New Text"

The following example uses the Selection property with a Pane object to insert
text into the primary header pane.

With ActiveWindow

Microsoft Office 97/Visual Basic Programmer's Guide Page 160 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

 .View.Type = wdPageView
 .View.SeekView = wdSeekPrimaryHeader
 .ActivePane.Selection.InsertAfter Text:="Header"
End With

After you use the InsertAfter or InsertBefore method, the selection expands
to include the new text. You can, however, collapse the selection to its
beginning or ending point by using the Collapse method. The following
example inserts the word "Hello" after the text in the selection and then
collapses the selection to an insertion point after the word "Hello."

Selection.InsertAfter Text:="Hello"
Selection.Collapse Direction:=wdCollapseEnd

Moving and Extending the Selection

There are a number of methods you can use to move or extend the selection
represented by the Selection object (for instance, Move and MoveEnd). The
following example moves the selection to the beginning of the next paragraph.

Selection.MoveDown Unit:=wdParagraph, Count:=1, Extend:=wdMove

You can also move or extend the selection by changing the values of the Start
and End properties of the Selection object or by using the MoveStart and
MoveEnd methods. The following example extends the selection by moving the
ending position to the end of the paragraph.

Selection.MoveEnd Unit:=wdParagraph, Count:=1

Because there can be only one selection in a document window or pane, you can
also move the selection by selecting another object. Use the Select method to
select an item in a document. After using the Select method, you can use the
Selection property to return a Selection object. The following example selects
the first word in the active document and then changes the word to "Hello."

ActiveDocument.Words(1).Select
Selection.Text = "Hello "

You can also move the selection by using the GoToNext, GoToPrevious, or
GoTo method. The following example moves the selection to the fourth line in
the document.

Selection.GoTo What:=wdGoToLine, Which:=wdGoToAbsolute, Count:=4

The following example moves the selection just before the next field in the
active document.

Selection.GoToNext What:=wdGoToField

Microsoft Office 97/Visual Basic Programmer's Guide Page 161 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Objects Available from the Selection Object

Many of the objects available from the Range and Document objects are also
available from the Selection object, making it possible for you to manipulate
the objects within a selection. For a complete list of the objects available from
the Selection object, see "Microsoft Word Objects (Selection)" or "Selection
Object" in Help.

The following example updates the results of the fields in the selection.

If Selection.Fields.Count >= 1 Then Selection.Fields.Update

The following example indents the paragraphs in the selection by 0.5 inch.

Selection.Paragraphs.LeftIndent = InchesToPoints(0.5)

Instead of manipulating all the objects in the collection, you can use For
Each...Next to loop through the individual objects in the selection. The
following example loops through each paragraph in the selection and left aligns
any paragraphs it finds that are centered.

For Each para In Selection.Paragraphs
 If para.Alignment = wdAlignParagraphCenter Then para.Alignment = _

wdAlignParagraphLeft
Next para

The following example displays the name of each bookmark in the selection.

For Each aBook In Selection.Bookmarks
 MsgBox aBook.Name
Next aBook

Properties and Methods of the Selection Object

This section highlights some of the commonly used properties and methods of
the Selection object.

Returning or Setting the Text in the Selection

Use the Text property to return or set the contents of a Selection object. The
following example returns the selected text.

strText = Selection.Text

The following example changes the selected text to "Hello World."

Selection.Text = "Hello World"

Microsoft Office 97/Visual Basic Programmer's Guide Page 162 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Use the InsertBefore or InsertAfter method to insert text before or after the
selection. The following example inserts text at the beginning of the selection.

Selection.InsertBefore Text:="And furthermore "

Formatting the Selected Text

Use the Font property to gain access to characterformatting properties and
methods, and use the ParagraphFormat property to gain access to paragraph-
formatting properties and methods. The following example sets character and
paragraph formatting for the selection.

With Selection.Font
 .Name = "Times New Roman"
 .Size = 14
End With
Selection.ParagraphFormat.LeftIndent = InchesToPoints(0.5)

Returning a Range Object

If a method or property is available from the Range object but not from the
Selection object (the CheckSpelling method, for example), use the Range
property to return a Range object from the Selection object. The following
example checks the spelling of the selected words.

Selection.Range.CheckSpelling

Returning Information About the Selection

Use the Information property to return information about the selection. For
example, you can determine the current page number, the total number of
pages in a document, or whether or not the selection is in a header or footer.
The Information property accepts 35 different constants
(wdActiveEndPageNumber, wdNumberOfPagesInDocument, and
wdInHeaderFooter, to name just a few) that you can use to return different
types of information about the selection. If the selection is in a table, for
instance, the following example displays the number or rows and columns in the
table.

If Selection.Information(wdWithInTable) = True Then
 MsgBox "Columns = " & Selection.Information(wdMaximumNumberOfColu
 & vbCr & "Rows = " & Selection.Information(wdMaximumNumberOfR
End If

For a complete list and description of the constants you can use with the
Information property, see "Information Property" in Help.

Determining Whether Text Is Selected

Use the Type property to set or return the way you want the selection to be

Microsoft Office 97/Visual Basic Programmer's Guide Page 163 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

indicated in your document. For instance, you can use the wdSelectionBlock
constant to determine whether a block of text is selected. The following example
selects the paragraph that contains the insertion point if the selection is an
insertion point.

If Selection.Type = wdSelectionIP Then
 Selection.Paragraphs(1).Range.Select
End If

Working with the Find and Replacement
Objects

Use the Find and Replacement objects to find and replace specified ranges of
text in your documents. The Find object is available from either the Selection
or Range object (the find action differs slightly depending on whether you
return the Find object from the Selection object or the Range object).

Using Selection.Find

If you return the Find object from the Selection object, the selection is
changed when the find criteria are found. The following example selects the
next occurrence of the word "Hello." If the end of the document is reached
before the word "Hello" is found, the search is stopped.

With Selection.Find
 .Forward = True
 .Wrap = wdFindStop
 .Text = "Hello"
 .Execute
End With

The Find object includes properties that relate to the options in the Find and
Replace dialog box (Edit menu). You can set the individual properties of the
Find object, or you can use arguments with the Execute method, as shown in
the following example.

Selection.Find.Execute FindText:="Hello", Forward:=True, Wrap:=wdFind

Using Range.Find

If you return the Find object from a Range object, the selection isn't changed
but the range is redefined when the find criteria are found. The following
example locates the first occurrence of the word "blue" in the active document.
If the find operation is successful, the range is redefined and bold formatting is
applied to the word "blue."

With ActiveDocument.Content.Find
 .Text = "blue"
 .Forward = True
 .Execute
 If .Found = True Then .Parent.Bold = True

Microsoft Office 97/Visual Basic Programmer's Guide Page 164 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

End With

The following example performs the same action as the preceding example,
using arguments of the Execute method.

Set myRange = ActiveDocument.Content
myRange.Find.Execute FindText:="blue", Forward:=True
If myRange.Find.Found = True Then myRange.Bold = True

Using the Replacement Object

The Replacement object represents the replace criteria for a find and replace
operation. The properties and methods of the Replacement object correspond
to the options in the Find and Replace dialog box (Edit menu).

The Replacement object is available from the Find object. The following
example replaces all occurrences of the word "hi" with "hello." The selection
changes when the find criteria are found because the code returns the Find
object from the Selection object.

With Selection.Find
 .ClearFormatting
 .Text = "hi"
 .Replacement.ClearFormatting
 .Replacement.Text = "hello"
 .Execute Replace:=wdReplaceAll, Forward:=True, Wrap:=wdFindContin
End With

The following example removes all bold formatting in the active document. The
Bold property is True for the Find object and False for the Replacement
object. To find and replace formatting, set the find and replace text to empty
strings (""), and set the Format argument of the Execute method to True.
The selection remains unchanged because the code returns the Find object from
a Range object (the Content property returns a Range object).

With ActiveDocument.Content.Find
 .ClearFormatting
 .Font.Bold = True
 With .Replacement
 .ClearFormatting
 .Font.Bold = False
 End With
 .Execute FindText:="", ReplaceWith:="", Format:=True, Replace:=wd
End With

Working with Table, Column, Row, and Cell
Objects

The Word object model includes an object for tables as well as objects for the
various elements of a table. Use the Tables property with the Document,
Range, or Selection object to return the Tables collection. Use Tables(index),

Microsoft Office 97/Visual Basic Programmer's Guide Page 165 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

where index is the table's index number, to return a single Table object. The
index number represents the position of the table in the selection, range, or
document. The following example converts the first table in the selection to
text.

If Selection.Tables.Count >= 1 Then
 Selection.Tables(1).ConvertToText Separator:=wdSeparateByTabs
End If

Use the Cells property with the Column, Range, Row, or Selection object to
return the Cells collection. You can get an individual Cell object by using the
Cell method of the Table object or by indexing the Cells collection. The
following two statements both set myCell to a Cell object that represents the
first cell in table one in the active document.

Set myCell = ActiveDocument.Tables(1).Cell(Row:=1, Column:=1)
Set myCell = ActiveDocument.Tables(1).Columns(1).Cells(1)

Note To insert text into a cell in a table, use the Text property, the
InsertAfter method, or the InsertBefore method with a Range object. Use
the Range property with a Cell object to return a Range object. The following
example inserts a sequential cell number into each cell in table one.

i = 1
For Each c In ActiveDocument.Tables(1).Range.Cells
 c.Range.InsertBefore Text:="Cell " & i
 i = i + 1
Next c

Use the Columns property with the Table, Range, or Selection object to
return the Columns collection. Use Columns(index), where index is the index
number, to return a single Column object. The following example selects the
first column in table one.

ActiveDocument.Tables(1).Columns(1).Select

Use the Rows property with the Table, Range, or Selection object to return
the Rows collection. Use Rows(index), where index is the index number, to
return a single Row object. The following example applies shading to the first
row in table one.

ActiveDocument.Tables(1).Rows(1).Shading.Texture = wdTexture10Percent

Modifying Rows and Columns in Drawn Tables

When you try to work with an individual row or column in a drawn table (or any
table where two or more adjacent cells have been merged, leaving the rows and
columns not uniform), a runtime error may occur. The following example
generates an error if the first table in the active document doesn't have the
same number of rows in each column.

Microsoft Office 97/Visual Basic Programmer's Guide Page 166 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

ActiveDocument.Tables(1).Rows(1).Borders.Enable = False

You can avoid this error by first using the SelectColumn or SelectRow method
to select the cells in a particular column or row. After you've selected the
column or row you want, use the Cells property with the Selection object. The
following example selects the first row in table one in the active document. The
example uses the Cells property to return the selected cells (all the cells in the
first row) so that borders can be removed.

If ActiveDocument.Tables(1).Uniform = False
 ActiveDocument.Tables(1).Cell(1, 1).Select
 With Selection
 .SelectRow
 .Cells.Borders.Enable = False
 End With
End If

The following example selects the first column in table one. The example uses a
For Each...Next loop to add text to each cell in the selection (all the cells in the
first column).

If ActiveDocument.Tables(1).Uniform = False
 ActiveDocument.Tables(1).Cell(1, 1).Select
 Selection.SelectColumn
 i = 1
 For Each oCell In Selection.Cells
 oCell.Range.Text = "Cell " & i
 i = i + 1
 Next oCell
End If

Working with Other Common Objects

This section provides information and tips about working the some common
Word objects.

Using the HeaderFooter Object

The HeaderFooter object can represent either a header or a footer. The
HeaderFooter object is a member of the HeadersFooters collection, which is
available from the Section object. Use the Headers(index) or Footers(index)
property, where index is one of the WdHeaderFooterIndex constants, to
return a single HeaderFooter object.

The following example creates a Range object (oRange) that references the
primary footer for section one in the active document. After the example sets
the Range object, it deletes the existing footer text. It also adds the AUTHOR
field to the footer, along with two tabs and the FILENAME field.

Set oRange = ActiveDocument.Sections(1).Footers(wdHeaderFooterPrimary
With oRange
 .Delete

Microsoft Office 97/Visual Basic Programmer's Guide Page 167 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

 .Fields.Add Range:=oRange, Type:=wdFieldFileName, Text:="\p"
 .InsertAfter Text:=vbTab
 .InsertAfter Text:=vbTab
 .Collapse Direction:=wdCollapseStart
 .Fields.Add Range:=oRange, Type:=wdFieldAuthor
End With

Note The PageNumbers collection is available only from a HeaderFooter
object. Apply the Add method to the PageNumbers collection to add page
numbers to a header or footer.

Using the Styles Collection

The Styles collection is available from the Document object. The following
example changes the formatting of the Heading 1 style in the active document.

ActiveDocument.Styles(wdStyleHeading1).Font.Name = "Arial"

The Styles collection isn't available from the Template object. If you want to
modify styles in a template, use the OpenAsDocument method to open a
template as a document so that you can modify styles. The following example
changes the formatting of the Heading 1 style in the template attached to the
active document.

Set aDoc = ActiveDocument.AttachedTemplate.OpenAsDocument
With aDoc
 .Styles(wdStyleHeading1).Font.Name = "Arial"
 .Close SaveChanges:=wdSaveChanges
End With

Specifying the CommandBars Context

Before using the CommandBars collection (which represents menus and
toolbars), use the CustomizationContext property to set the Template or
Document object in which changes to menus and toolbars are stored. The
following example adds the Double Underline command to the Formatting
toolbar. Because the customization change is stored in the Normal template, all
documents are affected.

CustomizationContext = NormalTemplate
CommandBars("Formatting").Controls.Add Type:=msoControlButton, _
 ID:=60, Before:=7

For more information about the scope of changes to menus and toolbars, see
Chapter 8, "Menus and Toolbars."

Using the Dialogs Collection

Use the Dialogs property to return the Dialogs collection, which represents the
builtin Word dialog boxes (for example, the Open and File Save dialog boxes).
You cannot create a new builtin dialog box or add one to the Dialogs collection.

Microsoft Office 97/Visual Basic Programmer's Guide Page 168 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

For information about creating custom dialog boxes with ActiveX controls, see
Chapter 12, "ActiveX Controls and Dialog Boxes."

Returning the MailMerge and Envelope Objects

Use the MailMerge property of the Document object to return a MailMerge
object. The MailMerge object is available regardless of whether or not the
specified document is a mailmerge document. Use the State property to
determine the state of the mailmerge operation before you execute the merge
by using the Execute method. The following example executes a mail merge if
the active document is a main document with an attached data source.

Set myMerge = ActiveDocument.MailMerge
If myMerge.State = wdMainAndDataSource Then myMerge.Execute

Use the Envelope property of the Document object to return an Envelope
object. The Envelope object is available regardless of whether or not you've
added an envelope to the specified document. However, an error occurs if you
use one of the following properties and you haven't added an envelope to the
document: Address, AddressFromLeft, AddressFromTop, FeedSource,
ReturnAddress, ReturnAddressFromLeft, ReturnAddressFromTop, or
UpdateDocument.

The following example uses the On Error GoTo statement to trap the error that
occurs if you haven't added an envelope to the active document. If, however,
you've added an envelope to the document, the recipient address is displayed.

On Error GoTo ErrorHandler
MsgBox ActiveDocument.Envelope.Address
ErrorHandler:
If Err = 5852 Then MsgBox "Envelope is not in the specified document"

Adding and Editing Fields in a Document

You can add fields to a document by applying the Add method to the Fields
collection. The following example adds a DATE field in place of the selection.

ActiveDocument.Fields.Add Range:=Selection.Range, Type:=wdFieldDate

After you've added a field, you can return or set the field result and field code
by using the Result or Code property, either of which returns a Range object.
The following example changes the first field code in the selection, updates the
field, and then displays the field result.

If Selection.Fields.Count >= 1 Then
 With Selection.Fields(1)
 .Code.Text = "CREATEDATE *MERGEFORMAT"
 .Update
 MsgBox .Result.Text
 End With
End If

Microsoft Office 97/Visual Basic Programmer's Guide Page 169 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

InlineShape Objects vs. Shape Objects

A Shape object represents an object in the drawing layer, such as an
AutoShape, freeform, OLE object, ActiveX control, or picture. Shape objects are
anchored to a range of text but are freefloating in that you can positioned them
anywhere on the page. For information about working with Shape objects, see
Chapter 10, "Shapes and the Drawing Layer," and see "Shape Object" in Help.

An InlineShape object represents an object in the text layer of a document. An
inline shape can be a picture, an OLE object, or an ActiveX control.
InlineShape objects are treated like characters and are positioned as
characters within a line of text. For information about InlineShape objects, see
"InlineShapes Collection Object" or "InlineShape Object" in Help.

Using FormField Objects in Word Forms

You can create an Word online form that includes check boxes, text boxes, and
dropdown list boxes. These form elements can be inserted using the Forms
toolbar. The corresponding Visual Basic objects are CheckBox, TextInput, and
DropDown. All these objects can be returned from any FormField object in the
FormFields collection; however, you should return the object that corresponds
to the type of the form field. For example, the following instruction selects the
check box form field named "Check1" in the active document.

ActiveDocument.FormFields("Check1").CheckBox.Value = True

In addition to the form elements available on the Forms toolbar, you can add
ActiveX controls to an online form. ActiveX controls can be inserted using the
Control Toolbox. You can insert a control into the text layer or into the
drawing layer; the control will be represented by an InlineShape object or a
Shape object, respectively. For more information about working with ActiveX
controls, see Chapter 12, "ActiveX Controls and Dialog Boxes."

Determining Whether an Object Is Valid

You can avoid many runtime errors in your code by including statements that
determine whether a particular object returned by an expression or an object
referenced by a variable is valid. This section discusses some techniques for
checking the validity of a value returned by an expression or stored in a
variable.

You can use the TypeName function with a variable or expression to determine
the object type. The following example displays a message in the status bar if
Selection.NextField returns a Field object.

If TypeName(Selection.NextField) = "Field" Then StatusBar = "A field

The following example is functionally equivalent to the preceding example; it's
different only in that it uses an object variable (myField) to store the return
value of the NextField method.

Microsoft Office 97/Visual Basic Programmer's Guide Page 170 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Set myField = Selection.NextField
If TypeName(myField) = "Field" Then StatusBar = "A field was found"

If the specified variable or expression doesn't refer to an object, it evaluates to
Nothing. The following example applies the Update method to myField if the
NextField method doesn't return Nothing (that is, if the NextField method
returns a Field object, its only other possible return value).

Set myField = Selection.NextField
If Not (myField Is Nothing) Then myField.Update

Word includes the global IsObjectValid property. You can use this property to
determine whether an object referenced by a particular variable is valid. This
property returns False if the object referenced by the variable has been
deleted. The following example adds a table to the active document and assigns
it to the variable aTable. The example deletes the first table from the
document. If the table that aTable refers to wasn't the first table in the
document (that is, if aTable is still a valid object), the example removes
borders from the table.

Set aTable = ActiveDocument.Tables.Add(Range:=Selection.Range, NumRow
NumColumns:=3)

ActiveDocument.Tables(1).Delete
If IsObjectValid(aTable) = True Then aTable.Borders.Enable = False

Modifying Word Commands

You can modify most Word commands by turning them into macros. For
example, you can modify the Open command on the File menu so that instead
of displaying a list of Word document files (in Windows, files ending with
the .doc file name extension), Word displays every file in the current folder.

To display the list of builtin Word commands in the Macro dialog box (Tools
menu), click Word commands in the Macros in box. Every available menu,
toolbar, and shortcut key command is listed in this box. Each menu command
begins with the menu name associated with that command. For example, the
Save command on the File menu is listed as FileSave.

You can replace a Word command with a macro by giving a macro the same
name as the Word command. For example, if you create a macro named
"FileSave," Word runs this macro when you do any of the following: click Save
on the File menu, click the Save button on the Standard toolbar, or press the
shortcut key assigned to FileSave.

To modify a Word command

1. On the Tools menu, point to Macro, and then click Macros.

2. In the Macros in box, click Word Commands.

Microsoft Office 97/Visual Basic Programmer's Guide Page 171 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

3. In the Macro name box, click the Word command you want to modify
(for example, FileSave).

4. In the Macros in box, select a template or document location where you
want to store the macro. For example, click Normal.dot (global
template) to create a global macro (the FileSave command will be
automatically modified for all documents).

5. Click Create.

The Visual Basic Editor opens with a module displayed that contains a new
procedure whose name is the same as the command you clicked. If you clicked
the FileSave command, the FileSave macro appears as shown in the following
example.

Sub FileSave()
'
' FileSave Macro
' Saves the active document or template
'
 ActiveDocument.Save

End Sub

You can add additional instructions or remove the existing
ActiveDocument.Save instruction. Every time the FileSave command runs,
your FileSave macro runs instead of the Word command. To restore the original
FileSave command, you need to rename or delete your FileSave macro.

Note You can also replace a Word command by creating a code module whose
name is the same as the Word command (for example, FileSave) with a
subroutine named "Main."

Working with Events

An event is an action that's recognized by an object (such as opening a
document or quitting the application) and for which you can write code to
respond. Events can occur as a result of either a user action or program code, or
they can be triggered by the system. Word supports the events listed in the
following tables, as well as the ActiveX control events discussed in Chapter 12,
"ActiveX Controls and Dialog Boxes."

For more information about working with Word events, see the following Help
topics: "Using Events with the Document Object," "Using Events with ActiveX
Controls," and "Using Events with the Application Object."

Document Events

Document events occur when the user opens or closes an existing document or
creates a new document, as shown in the following table.

Microsoft Office 97/Visual Basic Programmer's Guide Page 172 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

The scope of a document event procedure depends on where it is stored. If you
store a Open or Close event procedure in a document, the procedure will run
only when the user closes or opens that document; if you store a Open or Close
event procedure in a template, the procedure will run when a document based
on the template or the template itself is opened or closed. A New event
procedure must be stored in a template; a New event procedure stored in a
document will never run, because new documents can only be based on
templates.

The following example maximizes the Word application window when the
document is opened.

Private Sub Document_Open()
 Application.WindowState = wdWindowStateMaximize
End Sub

ActiveX Control Events

Word implements the LostFocus and GotFocus events for ActiveX controls in a
Word document.

The following example leaves CommandButton1 disabled until the user enters a
value in TextBox1.

Private Sub TextBox1_LostFocus()
 If TextBox1.Value = "" Then
 CommandButton1.Enabled = False
 Else
 CommandButton1.Enabled = True
 End If
End Sub

Additional ActiveX control events are documented in Microsoft Forms Help. For
information about using ActiveX controls in custom dialog boxes and
documents, see Chapter 12, "ActiveX Controls and Dialog Boxes."

Event Description

Close Occurs when a document is closed.

New Occurs when a new document based on the
template is created.

Open Occurs when a document is opened.

Event Description

LostFocus Occurs when the focus is moved from an
embedded ActiveX control.

GotFocus Occurs when the focus is moved to an
embedded ActiveX control.

Microsoft Office 97/Visual Basic Programmer's Guide Page 173 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Application Events

Application events occur when the user quits the application or the focus is
shifted to another document. However, unlike document and ActiveX control
events, the Application object doesn't have events enabled by default. Before
you can use events with the Application object, you must create a new class
module and declare an object of type Application with events. You use the
Class Module command (Insert menu) in the Visual Basic Editor to create a
new class module.

To enable the events of the Application object, you'd add the following
declaration to the class module.

Public WithEvents App As Application

After the new object has been declared with events, it appears in the Object
box in the class module, and you can write event procedures for the new object.
(When you select the new object in the Object box, the valid events for that
object are listed in the Procedure box.)

Before the procedures will run, however, you must connect the declared object
in the class module to the Application object. You can do this from any module
by using the following declaration (where "EventClass" is the name of the class
module you created to enable events).

Public X As New EventClass

After you've created the X object variable (an instance of the EventClass class),
you can set the App object of the EventClass class equal to the Word
Application object.

Sub InitializeApp()
Set X.App = Application

End Sub

After you run the InitializeApp procedure, the App object in the EventClass class
module points to the Word Application object, and the event procedures in the
class module will run whenever the events occur.

After you've enabled events for the Application object, you can create event
procedures for the events described in the following table.

Event Description

DocumentChange Occurs when a new document is created, when
an existing document is opened, or when
another document is made the active
document.

Quit Occurs when the user quits Word.

Microsoft Office 97/Visual Basic Programmer's Guide Page 174 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

The following example ensures that the Standard and Formatting toolbars are
visible before the user quits Word. As a result, when Word is started again,
these toolbars won't be visible.

Private Sub App_Quit()
 CommandBars("Standard").Visible = True
 CommandBars("Formatting").Visible = True
End Sub

Using Auto Macros

By giving a macro a special name, you can run it automatically when you
perform an operation such as starting Word or opening a document. Word
recognizes the following names as automatic macros, or "auto" macros.

For more information about using auto macros, see "Auto Macros" in Help.

Using Automation

In addition to working with Word data, you may want your application to
exchange data with other applications, such as Microsoft Excel, Microsoft
PowerPoint, or Microsoft Access. You can communicate with other applications
by using Automation (formerly OLE Automation).

Automating Word from Another Application

Automation allows you to return, edit, and export data by referencing another
application's objects, properties, and methods. Application objects that you can
reference in another application are called Automation objects. The first step
toward making Word available to another application for Automation is to create
a reference to the Word type library. To create a reference to the Word type
library, click References on the Tools menu in the Visual Basic Editor, and
then select the check box next to Microsoft Word 8.0 Object Library.

Next, declare an object variable that will refer to the Word Application object,
as in the following example.

Dim appWD As Word.Application.8

Macro name When it runs

AutoExec Each time you start Word or load a global
template

AutoNew Each time you create a new document

AutoOpen Each time you open an existing document

AutoClose Each time you close a document

AutoExit Each time you quit Word or unload a global
template

Microsoft Office 97/Visual Basic Programmer's Guide Page 175 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Use the Visual Basic CreateObject or GetObject function with the Word OLE
Programmatic Identifier (Word.Application.8 or Word.Document.8), as shown in
the following example. If you want to see the Word session, set the Visible
property to True.

Dim appWD As Word.Application.8

Set appWD = CreateObject("Word.Application.8")
appWd.Visible = True

The CreateObject function returns a Word Application object and assigns it to
appWD. Using the objects, properties, and methods of the Word Application
object, you can control Word through this variable. The following example
creates a new Word document.

appWd.Documents.Add

The CreateObject function starts a Word session that Automation won't close
when the object variable that references the Application object expires. Setting
the object reference to the Nothing keyword won't close Word either. Instead,
use the Quit method to close Word. The following Microsoft Excel example
inserts data from cells A1:B10 on Sheet1 into a new Word document and then
arranges the data in a table. The example uses the Quit method to close the
new instance of Word if the CreateObject function was used. If the GetObject
function returns error 429, the example uses the CreateObject function to start
a new session of Word.

Dim appWD As Word.Application
Err.Number = 0
On Error GoTo notloaded
Set appWD = GetObject(, "Word.Application.8")
notloaded:
If Err.Number = 429 Then
 Set appWD = CreateObject("Word.Application.8")
 theError = Err.Number
End If
appWD.Visible = True

With appWD
 Set myDoc = .Documents.Add
 With .Selection
 For Each c In Worksheets("Sheet1").Range("A1:B10")
 .InsertAfter Text:=c.Value
 Count = Count + 1
 If Count Mod 2 = 0 Then
 .InsertAfter Text:=vbCr
 Else
 .InsertAfter Text:=vbTab
 End If
 Next c
 .Range.ConvertToTable Separator:=wdSeparateByTabs
 .Tables(1).AutoFormat Format:=wdTableFormatClassic1
 End With
 myDoc.SaveAs FileName:="C:\Temp.doc"
End With
If theError = 429 Then appWD.Quit

Microsoft Office 97/Visual Basic Programmer's Guide Page 176 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Set appWD = Nothing

Automating Another Application from Word

To exchange data with another application by using Automation from Word, you
must first set a reference to the other application's type library in the
References dialog box (Tools menu). After you've done this, the other
application's objects, properties, and methods will show up in the Object
Browser and the syntax will be automatically checked at compile time. You can
also get contextsensitive Help on these objects, properties, and methods.

Next, declare object variables that will refer to the objects in the other
application as specific types. The following example declares a variable that will
point to the Microsoft Excel Application object.

Dim xlObj As Excel.Application.8

You obtain a reference to the Automation object by using the CreateObject or
GetObject function. Then, using the objects, properties, and methods of the
other application, you add, change, or delete information. When you finish
making your changes, close the application. The following Word example
determines whether Microsoft Excel is currently running. If the specified
Microsoft Excel task exists, the example uses the GetObject function;
otherwise, it uses the CreateObject function. The example then sends the
selected text to cell A1 on Sheet1 in the active Microsoft Excel workbook. Use
the Set statement with the Nothing keyword to clear the Automation object
variable after the task has been completed.

Dim xlObj As Excel.Application.8
If Tasks.Exists("Microsoft Excel") = True Then
 Set xlObj = GetObject(, "Excel.Application.8")
Else
 Set xlObj = CreateObject("Excel.Application.8")
End If
xlObj.Visible = True
If xlobj.Workbooks.Count = 0 Then xlobj.Workbooks.Add
xlObj.Worksheets("Sheet1").Range("A1").Value = Selection.Text
Set xlObj = Nothing

The following Word example determines whether PowerPoint is currently
running. If the PowerPoint task exists, the example uses the GetObject
function; otherwise, it uses the CreateObject function. The example then
creates a new presentation, with the first text box including the name of the
active Word document and the second text box including the text from the first
paragraph in the active document. Use the Set statement with the Nothing
keyword to clear the automation object variable after the task has been
completed.

Dim pptObj As PowerPoint.Application.8
If Tasks.Exists("Microsoft PowerPoint") = True Then
 Set pptObj = GetObject(, "PowerPoint.Application.8")
Else
 Set pptObj = CreateObject("PowerPoint.Application.8")
End If

Microsoft Office 97/Visual Basic Programmer's Guide Page 177 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

pptObj.Visible = True
Set pptPres = pptObj.presentations.Add
Set aSlide = pptPres.Slides.Add(Index:=1, Layout:=ppLayoutText)
aSlide.Shapes(1).TextFrame.TextRange.Text = ActiveDocument.Name
aSlide.Shapes(2).TextFrame.TextRange.Text = ActiveDocument.Paragraphs
Set pptObj = Nothing

For information about automating Microsoft Access, see Chapter 3, "Microsoft
Access Objects." For information about using Data Access Objects (DAO) from
Word, see Chapter 11, "Data Access Objects," and see "Using DAO from
Microsoft Word" in Help.

Communicating with Embedded Word Objects

You can use the Application property of any Word object to return the Word
Application object. This is useful for returning the Word Application object
from a Word document embedded in another application. The following
example, run from Microsoft Excel, sets an object variable to the Word
Application object. (For this example to work, shape one on the active
worksheet must be an embedded Word document.) The final instruction in the
example adds text at the beginning of the embedded Word document.

Dim appWRD As Word.Application
Set embeddedDoc = ActiveSheet.Shapes(1)
Set appWRD = embeddedDoc.OLEFormat.Object.Object.Application
appWRD.ActiveDocument.Range(Start:=0, End:=0).InsertBefore Text:="New

The following example, run from PowerPoint, sets an object variable to the Word
Application object. (For this example to work, shape one on slide one in the
presentation must be an embedded Word document.) The final instruction in the
example displays the text in the embedded Word document.

Dim appWRD As Word.Application
Set embeddedDoc = Presentations(1).Slides(1).Shapes(1)
embeddedDoc.OLEFormat.Activate
Set appWRD = embeddedDoc.OLEFormat.Object.Application
MsgBox appWRD.ActiveDocument.Content.Text

Contents
� Tools for Modifying the User Interface
� Scope of Changes to the User Interface
� Choosing the Best UserInterface Enhancement
� The Menu System
� DesignTime Modifications to the Menu System
� RunTime Modifications to the Menu System

C H A P T E R 8 Microsoft Office 97/Visual Basic Programmer's Guide

Menus and Toolbars

Microsoft Office 97/Visual Basic Programmer's Guide Page 178 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

� Toolbars
� DesignTime Modifications to Toolbars
� RunTime Modifications to Toolbars
� Menu Item and Toolbar Control IDs

An essential part of creating a useful custom application is providing a simple
and consistent way for the user to interact with your Visual Basic application.
Menus and toolbars provide a quick, convenient, and widely accessible way to
expose simple commands and options to the user. In Microsoft Office 97, menus
and toolbars are easy to design and modify; Microsoft Access 97, Microsoft
Excel 97, Microsoft Word 97, and Microsoft PowerPoint 97 all share the same
basic customization interface — the Customize dialog box. Because all menus
and toolbars are represented by the same type of object — the CommandBar
object — they're easy to customize and control from Visual Basic, as well.

The information in this chapter covers the shared menu and toolbar
customization features of Microsoft Access, Microsoft Excel, Microsoft Word, and
Microsoft PowerPoint. For more information about customizing menus and
toolbars in Microsoft Access, see Chapter 1 in Building Applications with
Microsoft Access 97, which is available in Microsoft Access 97 and Microsoft
Office 97, Developer Edition. An online version of that book is available in the
Value Pack on CDROM in Microsoft Access 97 and Microsoft Office 97,
Professional Edition.

Note Microsoft Outlook doesn't provide an interface for customizing menus
and toolbars. Therefore, none of the information in this chapter about the
Customize dialog box applies to Microsoft Outlook.

Tools for Modifying the User Interface

There are two tools for customizing menu bars and toolbars: the shared
Customize dialog box and Visual Basic. Although the Customize dialog box
differs slightly from one Office application to the next, the programmable
objects used to modify menu bars and toolbars are the same across all
applications. This section describes the Customize dialog box and the shared
programmable objects, as well as when and how to use these tools.

The Customize Dialog Box

The Office applications (excluding Outlook) provide a common interface — the
Customize dialog box — for making designtime changes to your Visual Basic
application. Designtime changes to menu bars and toolbars are any changes
you make before the application runs. This includes adding, deleting, moving,
and restoring menu components and toolbar controls, as well as setting menu-
component and toolbarcontrol properties that won't change in response to
changing conditions at run time.

The sections in this chapter discuss how to modify menu bars and toolbars by
using either the Customize dialog box or Visual Basic code. In cases where you
can use either technique to make the same modifications, using the Customize
dialog box to make designtime changes is quicker and easier. Therefore, you
should be familiar with the elements of and techniques for using this dialog box.

Microsoft Office 97/Visual Basic Programmer's Guide Page 179 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

To display the Customize dialog box

� On the View menu, point to Toolbars, and then click Customize.

The following illustration shows the Toolbars tab in the Customize dialog box
displayed by PowerPoint.

Microsoft Access, Microsoft Excel, and Microsoft Word all provide the same
controls in the Customize dialog box (on the Toolbars, Commands, and
Options tabs) as does PowerPoint, but these first three applications also include
other elements on the Toolbars and Commands tabs that are specific to
customizing those applications. Those elements are described in the following
paragraphs.

Microsoft Access The Toolbars tab contains a Properties button that
displays the Toolbar Properties dialog box. Use this dialog box to set
properties of builtin or custom menu bars and toolbars. For more information
about using the Toolbar Properties dialog box, see Chapter 1 in Building
Applications with Microsoft Access 97.

Microsoft Excel The Toolbars tab contains an Attach button that displays
the Attach Toolbars dialog box. You can use this dialog box to copy menu bars
and toolbars from the application workspace to the active workbook. For more
information, see "Scope of Changes to the User Interface" later in this chapter.

Microsoft Word The Commands tab contains a Save in box you can use to
specify the context of the designtime changes you make in the Customize
dialog box. The New Toolbar dialog box that appears when you click the New
button on the Toolbars tab contains the Make toolbar available to box. For
more information, see "Scope of Changes to the User Interface" later in this
chapter. The Commands tab also contains a Keyboard button that displays
the Customize Keyboard dialog box; you can use this dialog box to assign
shortcut keys to any macro or builtin Word command.

After you've opened the Customize dialog box in any Microsoft Office
application, you follow the same general procedure for modifying any builtin or
custom menu or toolbar, as described by the following steps.

Microsoft Office 97/Visual Basic Programmer's Guide Page 180 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

1. In the Toolbars box on the Toolbars tab, select the check box next to
the name of the menu bar or toolbar you want to display and modify.
When you create a new menu bar or toolbar, it's automatically displayed.

2. Click any menu item (including menu and submenu captions) or toolbar
control to select it. The command associated with the control doesn't run
while the Customize dialog box is open.

3. Rightclick the item or control you've selected to display the shortcut menu
containing the available customization options. Options for menu
commands and toolbar buttons include resetting the command; deleting
the item or control; changing its name; specifying whether it should have
a name, an image, or both displayed; modifying its image; and setting it
to begin a group (that is, to appear with a line above or before it).

Note One or more of these options may not be available for builtin commands
or controls; unavailable options appear dimmed on the shortcut menu.

While the Customize dialog box is open, you can rearrange items and controls
by dragging and dropping them, and you can add new items and controls from
the Commands tab. For more information about adding new items and
controls, see the corresponding procedures in "DesignTime Modifications to the
Menu System" and "DesignTime Modifications to Toolbars" later in this chapter.

Visual Basic

In general, to create or modify the user interface of the Microsoft Office
application in which you're delivering your Visual Basic application, you should
use the Customize dialog box. Changes you make to the user interface by
using the Customize dialog box are known as designtime changes.

You can also add to and modify menus and toolbars by using the command bar
portion of the shared Microsoft Office object model in Visual Basic code: the top-
level object is the CommandBars collection, which is returned by the
CommandBars property in all the Microsoft Office applications. Every menu
bar, shortcut menu, and toolbar is represented by a CommandBar object in
this collection. Every CommandBar object contains a CommandBarControls
collection; each control on a menu bar or toolbar is represented by a member of
this collection.

For more information about the CommandBars collection, all the objects it
contains, and the properties and methods of those objects, see "Overview of
command bars" and the corresponding object, property, and method topics in
Help.

You can write code that runs just once to create or change elements of menus
or toolbars; in effect, the code simulates making designtime changes in the
Customize dialog box. In some Microsoft Office applications, however, you may
be required to use a combination of this kind of Visual Basic code and the
Customize dialog box to design your Visual Basic application. The following are
some common areas where you must use a combination of code and the
container application's interface:

Microsoft Office 97/Visual Basic Programmer's Guide Page 181 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

� If you cannot use the Customize dialog box to create a new menu bar,
you'll need to create a menu bar by using Visual Basic. After you've
created the menu bar in Visual Basic, you can design menus on that menu
bar by using the Customize dialog box.

� If your container application doesn't provide a way to display builtin or
custom shortcut menus while the Customize dialog box is open, you
must use Visual Basic code to modify those shortcut menus.

� If your container application doesn't provide an interface for adding or
modifying text boxes, dropdown list boxes, or combo boxes on toolbars,
you must use Visual Basic code to add and design these controls.

You can also write code that exists in your Visual Basic application to make
changes to the menu system while your application is running (for example, you
can write code to disable a command on a menu under certain conditions, or to
add a menu to a menu bar in response to a user's actions). Changes brought
about by your code while your Visual Basic application is running are known as
runtime changes.

Scope of Changes to the User Interface

Each Microsoft Office application uses slightly different rules regarding where
and how changes to the user interface are stored. It's important to understand
how you can control the scope of the changes, because the ability of your Visual
Basic application to display your custom interface correctly depends on it.

Microsoft Access

The following information describes managing and storing menu bars and
toolbars in Microsoft Access. For more information about working with menu
bars and toolbars in Microsoft Access, see Chapter 1 in Building Applications
with Microsoft Access 97.

You can use custom menu bars and shortcut menus in your custom application
in three ways:

� Attached to a form or report. Microsoft Access displays your custom menu
bar whenever you open the form or display the report in print preview. For
more information, see "MenuBar Property" in Help.

� As a shortcut menu attached to a form, a control on a form, or a report.
Microsoft Access displays your custom menu whenever you rightclick the
form, control, or report it's attached to. For more information, see
"ShortCutMenuBar Property" in Help.

� As your application's global menu bar. Microsoft Access displays your
custom menu bar in all windows, except in forms or reports that have
their own custom menu bar. (A form or report's custom menu bar
overrides a global custom menu bar.) You can specify a menu bar to use
throughout your application by using the Startup dialog box.

Microsoft Office 97/Visual Basic Programmer's Guide Page 182 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

You can use one or more custom toolbars in an application. Create the toolbars
you want, and then use the appropriate method to display your custom
toolbars:

� If your application has only one custom toolbar, just use the Toolbars
command (View menu) to display it; it will appear each time your
application starts.

� If your application has different custom toolbars for different forms or
reports, you can specify a toolbar for each form or report in the form or
report's Toolbar property.

Note There is no need to create event procedures for the Activate and
Deactivate events of the form to show and hide toolbars, as was required
in previous versions of Microsoft Access. Setting the Toolbar property to a
custom toolbar automatically hides the builtin Form View toolbar when
your form is opened and hides your custom toolbar when a user closes the
form or switches to another form.

� If you need to work with more than one custom toolbar for a form or
report, or if you want to hide or show built-in Microsoft Access toolbars,
you can use the Visible property of the CommandBar object in Visual
Basic code or use the ShowToolbar action in macros to hide and show
the toolbars.

� If you want your application to display only custom toolbars, you can hide
all built-in toolbars by clicking the Startup command (Tools menu) and
then clearing the Allow Built-in Toolbars check box.

Microsoft Excel

You can store custom menu bars and toolbars with the workspace or with the
workbook. When you quit Microsoft Excel, the toolbars in the workspace are
automatically saved in the file Username8.xlb (where Username is the current
user's Windows 95 logon name). If the user isn't logged on, the file name is
Excel8.xlb. The toolbars saved in a workbook are stored in the workbook file.

Workbooklevel menu bars and toolbars make it easier for you to create a
polished user interface for a custom application (an addin, for instance) and to
distribute custom toolbar buttons and their supporting procedures. If you're
going to distribute a custom toolbar with a custom application, you should
attach it to the workbook that contains that application so that the toolbar is
stored in the same file as the application.

To move a menu bar or toolbar from the workspace to a workbook

1. If the Customize dialog box isn't already open, point to Toolbars on the
View menu, and then click Customize.

2. On the Toolbars tab, click Attach.

The Attach Toolbars dialog box is displayed.

Microsoft Office 97/Visual Basic Programmer's Guide Page 183 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

3. In the Custom toolbars box, click the name of the menu bar or toolbar
you want to copy to the active workbook.

4. Click Copy.

The name of the menu bar or toolbar you copied appears in the Toolbars
in workbook box.

You can delete the original workspacelevel menu bar or toolbar by clicking the
Toolbars tab in the Customize dialog box, selecting the name of the menu bar
or toolbar you want to delete, and then clicking Delete. If you don't delete the
workspace version of the menu bar or toolbar, you can change it without
affecting the version stored in the workbook. If you make changes to the
workspace version of the menu bar or toolbar and would like to update the
workbook version to match the current workspace version, you can copy the
workspace version to the workbook again, thus replacing the previous workbook
version.

After you've copied a menu bar or toolbar to a workbook, the menu bar or
toolbar becomes available only after the user has opened that workbook. A
workbook version of the menu bar or toolbar retains not only its name and
contents, but also the code assignments for menu items or toolbar controls; the
location, size, and shape of the menu bar or toolbar; its onscreen position; and
whether it's visible or hidden.

You can also delete a workbook version of a menu bar or toolbar.

To delete a workbook version of a menu bar or toolbar

1. If the Customize dialog box isn't already open, point to Toolbars on the
View menu, and then click Customize.

2. On the Toolbars tab, click Attach.

The Attach Toolbars dialog box is displayed.

3. In the Toolbars in workbook box, click the name of the menu bar or
toolbar you want to delete.

4. Click Delete.

Note You cannot use Visual Basic to attach menu bars or toolbars to a
workbook or delete them from a workbook.

When you open a workbook that contains one or more menu bars or toolbars,
Microsoft Excel first determines whether a workspace menu bar or toolbar with
that name already exists. If not, Microsoft Excel creates a new workspace menu
bar or toolbar and copies the workbook version into it. This way, the you get a
fresh copy of the menu bar or toolbar, which you can alter by hiding it or by
copying items or controls to or from the workspacelevel copy. When you quit
Microsoft Excel, changes made to this copy of the menu bar or toolbar are
stored with the workspace file.

Microsoft Office 97/Visual Basic Programmer's Guide Page 184 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

There's no way to rename a menu bar or toolbar, so when the workbook is
reopened, the workspace already contains a menu bar or toolbar with the same
name as the workbook version, and Microsoft Excel uses the workspace copy
rather than reloading the workbook version. However, the procedures that
support the menu items or toolbar buttons in the open workbook still run when
the user clicks the corresponding item or control.

As a developer, you can design a menu bar or toolbar and then attach it to a
workbook. When the user opens the workbook, the custom menu bar or toolbar
is available. The user can then edit it and move items or controls from it to
personal menu bars or toolbars, without affecting the copy stored in the
workbook. The user's changed menu bars and toolbars are stored with the
workspace file when he or she quits Microsoft Excel. When the user starts
Microsoft Excel again, the edited menu bar or toolbar is available; clicking one
of the developer's menu items or toolbar controls loads the workbook that
contains the procedure attached to that item or control. To generate a fresh
copy of the workbook menu bar or toolbar, the user can delete the edited copy.

Microsoft Word

Word stores custom menus and toolbars in templates, just as it does with
macros. When you customize a menu or create a new toolbar, changes are
stored by default in the Normal template and are available "globally" — that is,
you can always display a custom toolbar stored in the Normal template, even if
the active document is based on a different template. A toolbar stored in a
template other than Normal is available under either of two circumstances: the
template is attached to the active document, or the template is loaded as a
global template (Tools menu, Templates and Addins command). When you
store a toolbar in a document, you can display the toolbar only when the
document itself is active.

If you're going to distribute a Visual Basic application with customized menus
and toolbars, you should store your menu bars and toolbars in a custom
template or in a document. Because every user has his or her own Normal
template, your Visual Basic application shouldn't change the Normal template.
It's also easier to remove custom menus and toolbars when the user quits your
application if the customizations are in the template or document that contains
your application. That is, when the user closes the document (if the document
contains toolbars or the template it's attached to contains toolbars) or unloads
your template, your custom toolbars are no longer available; only the builtin
menus and toolbars or the user's custom toolbars remain.

If two custom toolbars with the same name are available at the same time (for
example, if the Normal template and a loaded global template both have a
toolbar named "Custom Tools"), both toolbars are listed in the Customize
dialog box and can be displayed either separately or at the same time.

In Visual Basic, you can add, customize, or delete menu bars and toolbars in
any document or template. However, because the CommandBars property
applies only to the Application object, you must set the context for your
change before you make the change. Similar to using the Store in box on the
Commands tab in the Customize dialog box, you can use the
CustomizationContext property in Visual Basic to specify a Document or
Template object that represents the document or template in which you want

Microsoft Office 97/Visual Basic Programmer's Guide Page 185 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

to make changes. You must set the CustomizationContext property before
using the CommandBars property; this ensures that a reference to the
collection of menu bars and toolbars for that document or template is returned.
For more information, see "DesignTime Modifications to Toolbars" later in this
chapter.

Microsoft PowerPoint

Custom menu bars and toolbars are always stored with the workspace. When
you quit PowerPoint, the toolbars in the workspace are saved in the file
Username.pcb (where Username is the current user's Windows 95 logon name).
If the user isn't logged on, the file name is Powerpnt.pcb.

Because menu bars and toolbars aren't visible while a presentation is running,
customizing menus and toolbars in PowerPoint is limited to changing the
available menu commands and toolbar controls in design mode. You can use
either the Customize dialog box or Visual Basic to modify your own design
environment. If your Visual Basic application delivers a custom interface for
designing presentations, you must use Visual Basic to make changes to menus
and toolbars. When the user finishes with your application, it's a good idea for
you to remove changes you made in Visual Basic.

Choosing the Best UserInterface
Enhancement

Menus are lists of userinterface commands from which the user can choose.
Menus offer a convenient and consistent way to group commands and an easy
way for users to get to them. Commands for performing related tasks can be
listed on the same menu, and commands can also be grouped (separated by
lines from other commands or groups of commands). Submenus offer additional
levels of organization, and shortcut menus offer a way to group related
commands that apply to the limited context of a specific task.

You can assign access keys to make commands accessible from the keyboard,
and you can assign shortcut keys to provide the user even quicker access to the
commands. In addition, menus take up less space than toolbars, as the items
on a menu are displayed on demand and don't take up dedicated screen space.
On the other hand, if you want quick, graphical access to a command, a toolbar
may be a better choice.

Toolbars contain controls that perform frequently used commands. Toolbars are
ideal for presenting individual property settings (such as bold or italic
formatting, or font size), commands that are best represented visually, and
commands you want to access with one click of the mouse. In addition, toolbars
remain displayed while the user works, whereas menus are displayed only on
demand; this makes scanning a toolbar for a particular button easier than
scanning the menus on a menu bar for a particular command. However, if you
need easy keyboard access to a command, if you want to display your
commands hierarchically, or if you are short on screen space, a menu may be a
better choice.

If you need to present a more complex set of options to the user, a dialog box
may be a better choice than either a toolbar or a menu. If you want to place a

Microsoft Office 97/Visual Basic Programmer's Guide Page 186 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

tool closer to the data the user is working with, the best solution may be to
place a control directly on a worksheet or document. For more information
about these various types of userinterface enhancements, see Chapter 12,
"ActiveX Controls and Dialog Boxes."

The Menu System

The menu system in each Microsoft Office application is composed of the entire
set of menus and the items on each menu. Each menu is either a menu, a
submenu, or a shortcut menu. Each menu item is usually either a command or a
submenu caption. In this chapter, the term component refers generically to any
menu or menu item.

A menu bar is a bar at the top of the active window that displays the names of
all the menus that are available in that application at any given time. That is, a
Microsoft Office application can change the menu bar it displays in response to a
change in the active window or in response to a Visual Basic instruction. For
example, when you edit a chart in Microsoft Excel, the menu bar containing a
set of menus that apply to the charting environment is automatically displayed.

A menu is a list of menu items that appears (drops down) when you click a
menu name on the menu bar.

A submenu (or child menu) is a menu that's attached to the side of another
menu (the parent menu), adjacent to a particular submenu caption on the
parent menu. Each submenu caption is marked with an arrowhead pointing to
the right. You can add submenus to menus or shortcut menus. A submenu is
displayed when you point to the corresponding submenu caption on the parent
menu.

A shortcut menu is a floating menu that contains a group of commands
pertinent to a specific task. A shortcut menu appears when the user rightclicks
an object.

Guidelines for Customizing the Menu System

You can modify the menu system in a Microsoft Office application in a wide

Microsoft Office 97/Visual Basic Programmer's Guide Page 187 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

range of ways: you can create new menu bars, add new menus to builtin or
custom menu bars, add new menu items (commands or submenus) to builtin or
custom menus or submenus, add and modify shortcut menus, and assign
macros to menu items. In addition, you can restore the builtin menu system to
its default state at any time.

Adding Custom Components or Modifying Builtin
Components

Each Microsoft Office application comes with its own builtin menu system. You
can modify components of this builtin system or create and modify custom
menu components.

Modifying a builtin menu bar, menu, or menu item is appropriate if you're
adding or changing a small number of components. For example, if you just
want to provide menu access to a macro, you can add a menu item to a builtin
menu and then link the macro to that item.

If you need to make more extensive changes, you may be better off creating a
completely new component. For example, if you want to add several new
menus — each of which will contain several new menu items — it may be more
appropriate to create an entirely new menu bar to contain the new menus.

Using Submenus

If your menus become crowded and difficult to scan, you can use submenus to
organize them more effectively and add clarity to your Visual Basic application
by reducing the amount of information presented to the user at any one time.
For example, suppose that you create a menu that presents a number of
options, as shown in the following illustration.

Using submenus, you can present the same items in either of the ways shown in
the following illustration.

With submenus, the user can browse through commands that might otherwise
be available only through a series of custom dialog boxes. However, if you need
to create a complicated array of submenus to present a set of commands, a

Microsoft Office 97/Visual Basic Programmer's Guide Page 188 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

dialog box may be a better solution.

Using Shortcut Menus

If you want to give the user access to a command that applies only to the
limited context of a selected object, you can add the command to the builtin
shortcut menu for that object. In Microsoft Access, you can also create custom
shortcut menus and associate them with objects in your application. For
information about creating and using custom shortcut menus in Access, see
Chapter 1 in Building Applications with Microsoft Access 97.

Using Text Boxes, List Boxes, and Combo Boxes

Although it's possible to add builtin or custom text boxes, list boxes, and combo
boxes to menus, shortcut menus, and submenus in your Visual Basic
application, such controls are better suited to toolbars. Text boxes on menus
can be useful in some instances to display or return a simple setting. List boxes
and combo boxes also display the current setting when a menu is displayed.
However, as soon as the user selects a new value in the box, the menu is closed
(the user cannot see or revise the setting and must display the menu again to
verify it).

If you want to add builtin text boxes, list boxes, and combo boxes to menus,
use the same techniques given for adding builtin commands (see "Adding and
Grouping Commands" later in this chapter). If you want to add custom text
boxes, list boxes, and combo boxes, use the same techniques given for adding
them to toolbars (see "DesignTime Modifications to Toolbars" later in this
chapter).

DesignTime Modifications to the Menu
System

Designtime changes to the menu system are any changes you make before the
application runs. These include adding, deleting, moving, and restoring menu
components, as well as setting menu component properties that won't change
in response to changing conditions at run time.

Adding a Custom Menu Bar

If you want to design a set of menus that differs significantly from what's
currently available on the Office application's builtin menu bar or menu bars,
you may need to create a new menu bar. You can do this by using the
Customize dialog box in Microsoft Access, or by using Visual Basic in Microsoft
Excel, Word, or PowerPoint.

Using the Customize Dialog Box

In Microsoft Access, the Customize dialog box provides a convenient way to
add a custom menu bar.

To add a menu bar in Microsoft Access

Microsoft Office 97/Visual Basic Programmer's Guide Page 189 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

1. If the Customize dialog box isn't already open, point to Toolbars on the
View menu, and then click Customize.

2. On the Toolbars tab, click New.

3. In the Toolbar name box, type a name for the new menu bar, and then
click OK.

An empty, floating menu bar with the name you typed is displayed.

4. Click Properties to display the Toolbar Properties dialog box.

5. In the Type box, click Menu Bar.

You can also set many other properties of your custom menu bar in the
Toolbar Properties dialog box. For information about these properties and
their uses, see Chapter 1 in Building Applications with Microsoft
Access 97.

The new menu bar is added to the list of in the Toolbars box on the Toolbars
tab.

Using Visual Basic

You use the Add method of the CommandBars collection to create a new menu
bar; the MenuBar argument of the Add method determines whether the
CommandBar object you're creating can be displayed as a menu bar. The
following example creates a new menu bar named "Custom Menu Bar."

Set cstm = CommandBars.Add(Name:="Custom Menu Bar", Position:=msoBarT
 MenuBar:=True, Temporary:=False)

In Microsoft Excel, Word, and PowerPoint, you must use Visual Basic to create a
new menu bar. In Microsoft Access, you have the option of using either Visual
Basic or the Customize dialog box.

Adding Menus

You can add a menu to any builtin or custom menu bar. Because a Microsoft
Office application can display different builtin menu bars in different contexts,
you may have to add a command to more than one menu bar to make sure that
the user has access to the command regardless of the context. For example, in
Microsoft Excel, you might want to add a special Accounting menu to each menu
bar so that employees in a company can run the corresponding macros from
any sheet.

When you add a menu to a menu bar, you can specify an access key for the
menu; the access key appears underlined when the menu is displayed.

Note Although a Microsoft Office application may list toolbars that contain
shortcut menus on the Toolbars tab in the Customize dialog box, you can

Microsoft Office 97/Visual Basic Programmer's Guide Page 190 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

neither add custom shortcut menus directly to these toolbars nor delete builtin
shortcut menus from them. You can, however, add items to, delete items from,
or customize items on shortcut menus. For information about customizing
shortcut menus, see "Adding and Modifying Shortcut Menus" later in this
section.

Using the Customize Dialog Box

The Customize dialog box provides a convenient way to add a menu to a built-
in or custom menu bar.

To add a custom menu to a menu bar

1. If the Customize dialog box isn't already open, point to Toolbars on the
View menu, and then click Customize.

2. If the menu bar you want to modify isn't visible, select the check box next
to the name of that menu bar in the Toolbars box on the Toolbars tab.

3. On the Commands tab, click New Menu in the Categories box.

4. Drag the New Menu item from the Commands box to the position on the
menu bar where you want to add the menu.

An Ibeam on the menu bar indicates the position where the new menu will
be added when you release the mouse button.

5. Rightclick the new menu, and then type a name in the Name box. Type
an ampersand (&) before the character you want to use as the access key
for the menu.

When you click the menu name, an empty menu is displayed. For information
about adding menu items to the new menu, see "Adding and Grouping
Commands" later in this section.

The Customize dialog box also provides a quick way to add a copy of any built-
in menu to a builtin or custom menu bar. You can customize the commands on
the copy without affecting the original builtin menu.

To add a copy of a builtin menu to a menu bar

1. If the Customize dialog box isn't already open, point to Toolbars on the
View menu, and then click Customize.

2. If the menu bar you want to modify isn't visible, select the check box next
to the name of that menu bar in the Toolbars box on the Toolbars tab.

3. On the Commands tab, click Builtin Menus in the Categories box.

4. Drag a builtin menu from the Commands box to the position on the
menu bar where you want to add the copy.

An Ibeam on the menu bar indicates the position where the menu will be

Microsoft Office 97/Visual Basic Programmer's Guide Page 191 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

added when you release the mouse button.

Tip You can also make a copy of any builtin menu by displaying the menu bar
that contains that menu and holding down CTRL while you drag the menu to
another menu bar.

Using Visual Basic

Use the Add method of the CommandBarControls collection to add a menu to
a CommandBar object that represents a particular menu bar. Setting the Type
argument of the Add method to msoControlPopup indicates that the control
you're adding displays a menu. Controls that display menus are known as pop-
up controls. The Before argument indicates the position of the new menu among
the existing menus on the menu bar. Set the Caption property of the
CommandBarPopup object returned by the Add method to specify the menu
name and the access key. The following Microsoft Excel example adds a new
menu named "Accounting" to the left of the Window menu on the menu bar for
worksheets.

Set cstmAccounting = CommandBars("Worksheet Menu Bar").Controls _
 .Add(Type:=msoControlPopup, Before:=9)
cstmAccounting.Caption = "&Accounting"

Note You use an ampersand (&) in the menu name in front of the character
that will be used as the access key for the menu. After you've added the menu,
you can specify the menu name either with or without the ampersand when you
reference the menu using Controls(index).

Adding Submenus

A submenu (child menu) is a menu attached to the side of another menu (the
parent menu), adjacent to a particular menu item (the submenu caption). You
can add submenus to menus, other submenus, and shortcut menus.

Just as you display the items on a menu by clicking the menu name on the
menu bar, you display items on a submenu by pointing to the submenu caption
on the parent menu. Similarly, just as you first add an empty menu (having a
name but no menu items) to a menu bar and then add individual menu items,
you first add an empty submenu to a parent menu and then add menu items.

Using the Customize Dialog Box

You use the Customize dialog box to add a submenu to another menu.

To add a submenu to a menu

1. If the Customize dialog box isn't already open, point to Toolbars on the
View menu, and then click Customize.

2. If the menu bar that contains the menu you want to modify isn't visible,
select the check box next to the name of that menu bar in the Toolbars
box on the Toolbars tab.

Microsoft Office 97/Visual Basic Programmer's Guide Page 192 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

3. On the Commands tab, click New Menu in the Categories box.

4. Drag the New Menu item from the Commands box to the position on the
menu where you want to add the submenu.

To indicate the position for the new submenu, drag it over the menu name
(and subsequent submenu captions, if necessary) to open the menu or
submenu you want, drag the new submenu to the location where you
want it on the menu or submenu, and then release the mouse button. A
horizontal Ibeam on the menu indicates the position where the submenu
will be added when you release the mouse button.

5. Rightclick the new submenu, and then type a name in the Name box.
Type an ampersand (&) before the character you want to use as the
access key for the submenu.

When you click the submenu caption, an empty submenu is displayed. For
information about adding menu items to the new submenu, see "Adding and
Grouping Commands" later in this section.

Using Visual Basic

Use the Add method of the CommandBarControls collection to add a
submenu to a CommandBar object that represents another menu. Setting the
Type argument of the Add method to msoControlPopup indicates that the
control you're adding is a popup control — the same kind of control that
indicates a menu on a menu bar. The Before argument indicates the position of
the new menu among the existing items on the menu. Set the Caption property
of the CommandBarPopup object returned by the Add method to specify the
submenu caption and the access key. The following Microsoft Excel example
adds a new submenu named "Product" at the end of the Accounting menu on
the menu bar for worksheets.

Set cstmAcctProduct = CommandBars("Worksheet Menu Bar").Controls("Acc
 .Controls.Add(Type:=msoControlPopup)
cstmAccProduct.Caption = "&Product"

Note You use an ampersand (&) in front of the character in the submenu
caption that will be used as the access key for the submenu. After you've added
the submenu, you can specify the submenu name either with or without the
ampersand when you reference the submenu by using Controls(index).

Adding and Grouping Commands

You can add commands to any builtin or custom menu or submenu, modify their
appearance, and visually separate them into logical groupings. This section
deals with adding commands to menus and submenus. The following section
addresses the specific issues of adding shortcut menus and then adding menu
items to them.

Note Although you can add text boxes, list boxes, and combo boxes to menus
and submenus, they're not usually the best choice for presenting or returning

Microsoft Office 97/Visual Basic Programmer's Guide Page 193 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

information. If you want to add custom text boxes, list boxes, and combo boxes,
use the same techniques given for adding them to toolbars (see "DesignTime
Modifications to Toolbars" later in this chapter).

Using the Customize Dialog Box

The Customize dialog box provides an easy way to add items to menus and
submenus.

To add a builtin command to a menu or submenu

1. If the Customize dialog box isn't already open, point to Toolbars on the
View menu, and then click Customize.

2. If the menu bar that contains the menu you want to modify isn't visible,
select the check box next to the name of that menu bar in the Toolbars
box on the Toolbars tab.

3. On the Commands tab, select a category of commands in the
Categories box.

The commands in the category you select are listed in the Commands
box.

4. Drag a command from the Commands box to the position on the menu
or submenu where you want to add the command.

To indicate the position for the command, drag it over the menu name
(and subsequent submenu captions, if necessary) to open the menu or
submenu you want, drag the command to the location where you want it
on the menu or submenu, and then release the mouse button. A
horizontal Ibeam on the menu indicates the position where the command
will be added when you release the mouse button.

Tip You can also make a copy of any builtin command by displaying the menu
bar that contains a menu with that command and holding down CTRL while you
drag the command to another menu.

The Customize dialog box also provides a quick way to add a custom command
to a builtin or custom menu bar. However, each Microsoft Office application
involves a different technique for using the Customize dialog box to do this.
The following paragraphs describe these differences.

Microsoft Access To add a menu item that runs a macro, follow the same
steps as in the procedure for adding a builtin command to a menu. In the
Categories box, click All Macros. Drag the macro you want from the
Commands box to the position on the menu where you want it to appear. To
add a menu item that runs a Function procedure, follow the same steps as in
the procedure for adding a builtin command to a menu. In the Categories box,
click any category, and then drag any item you want to the position on the
menu where you want it to appear. Rightclick the item, and then click Control
Properties to display the Control Properties dialog box. In the Caption box,
delete the current name, and then type a new name for your command. In the
On Action box, type an expression to run your Visual Basic Function

Microsoft Office 97/Visual Basic Programmer's Guide Page 194 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

procedure. The expression must use the following syntax: =functionname().

Microsoft Excel Follow the same steps as in the procedure for adding a builtin
command to a menu; in the Categories box, click Macros, and then drag
Custom Menu Item from the Commands box to the position on the menu
where you want it to appear. Rightclick the new item and then click Assign
Macro. In the Macro Name box in the Assign Macro dialog box, enter the
name of the macro you want to run.

Microsoft Word Follow the same steps as in the procedure for adding a built-
in command to a menu; in the Categories box, click Macros, and then drag a
macro from the Commands box to the position on the menu where you want it
to appear.

Tip In Word, if you write a procedure whose name is the same as that of a
builtin Word command (or if you write a procedure named "MAIN" in a module
whose name is the same as that of a builtin Word command), that procedure
will replace the builtin functionality of the command whenever the module that
contains it is available. Every copy of the menu item on whatever menu it
appears will run the replacement procedure. For more information about
controlling the context of your customizations, see "Scope of Changes to the
User Interface" earlier in this chapter. For more information about modifying
Word commands, see Chapter 7, "Microsoft Word Objects."

Microsoft PowerPoint Follow the same steps as in the procedure for adding
a builtin command to a menu; in the Categories box, click Macros, and then
drag a macro from the Commands box to the position on the menu where you
want it to appear.

Modifying the Appearance of a Command

Any command on a menu can have a button image displayed next to the
command name. Whether a button image appears next to a command is
determined by its "style." You set a command's style using commands on the
shortcut menu while the Customize dialog box is open. The following table
describes the effect of each style on menu commands.

Note By default, some builtin menu commands don't have a button image
associated with them and won't display an image regardless of the style you
set. However, you can add an image to any builtin menu command.

While the Customize dialog box is open, you can add or modify the button
image next to a menu command. The following table describes the techniques
you can use.

Style What appears on a menu

Default Style Button image and name

Text Only (In Menus) Name only

Text Only (Always) Name only

Image And Text Button image and name

Microsoft Office 97/Visual Basic Programmer's Guide Page 195 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Tip In Microsoft Access, you can use the Properties dialog box to set many
other properties of menu commands. For more information, see Chapter 1 in
Building Applications with Microsoft Access 97.

Grouping Commands

You can group related commands on a menu by separating them with lines. The
lines themselves aren't menu items; rather, you can set any item on a menu to
appear with a line before it. You use the Customize dialog box to set a
command to appear as the first item in a group of commands.

To begin a group of commands on a menu

1. If the Customize dialog box isn't already open, point to Toolbars on the
View menu, and then click Customize.

2. If the menu bar that contains the menu you want to modify isn't visible,
select the check box next to the name of that menu bar in the Toolbars
box on the Toolbars tab.

3. Rightclick the menu item you want to appear with a line above it, and
then click Begin Group.

The next time you rightclick that item, a check mark will be displayed

To Do this

Use a predefined button image Rightclick the command, point to Change
Button Image, and then click the image you
want.

Copy and paste another
command's button image

Rightclick the command that has the image
you want to use, and then click Copy Button
Image. Rightclick the command whose image
you're customizing, and then click Paste
Button Image.

Copy and paste an image from a
graphics program

In a graphics program, open the image you
want to copy. Select and copy the image
(preferably a 16 x 16 pixel image or portion).
Switch back to your application. Rightclick the
command, and then click Paste Button
Image.

Edit the command's current
button image

Rightclick the command, and then click Edit
Button Image. In the Button Editor dialog
box, you can change the color and shape of the
image, adjust the image's position on the
control, and preview your changes to the
image. When you finish editing the button
image, click OK.

Reset a command to use its
original button image (or no
image)

Rightclick the command, and then click Reset
Button Image.

Microsoft Office 97/Visual Basic Programmer's Guide Page 196 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

next to Begin Group on the shortcut menu. To remove the line before a
menu item, rightclick the item and then click Begin Group again (the
check mark will no longer appear).

Using Visual Basic

Use the Add method of the CommandBarControls collection to add a new
menu item to the CommandBar object that represents a particular menu or
submenu. To add a builtin command, specify the ID number of the command by
using the Id argument of the Add method. The following example adds the
Spelling command to the menu named "Quick Tools" on the menu bar named
"Custom Menu Bar."

Set mySpell = CommandBars("Custom Menu Bar").Controls("Quick Tools")
 .Controls.Add(Id:=2)

For information about determining the builtin command ID numbers of a
Microsoft Office application, see "Menu Item and Toolbar Control IDs" later in
this chapter.

To add a custom command, you add a new menu item and then set the
OnAction property to specify a Visual Basic procedure to run whenever that
item is clicked. Setting the Type argument of the Add method to
msoControlButton indicates that a menu item is a command. The following
Microsoft Excel example adds an Open Database menu item to the File menu on
the menu bar for worksheets. Microsoft Excel runs the OpenDatabaseProc Visual
Basic procedure whenever the user clicks this menu item. Open Database
appears directly above the Close command on the File menu.

Set databaseItem = CommandBars("Worksheet Menu Bar").Controls("File")
 .Controls.Add(Type:=msoControlButton, Before:=3)
With databaseItem
 .Caption:="Open Database"
 .OnAction:="OpenDatabaseProc"
End With

There are many properties of the objects that represent menu commands that
you can set in Visual Basic to modify the appearance of commands. For more
information, see "Style Property" and "FaceID Property" in Help, as well as the
Help topics for other properties and methods of the CommandBarButton
object.

To set a menu item to begin a group of menu items (that is, to be preceded by
a line), you just set the BeginGroup property of the CommandBarButton,
CommandBarPopup, or CommandBarComboBox object that represents the
menu item to True. To remove the line, set the BeginGroup property to False.
Use Controls(index), where index is the caption or index number of a menu
item, to return an object that represents the item. The following example adds a
line before the Open Database command on the File menu (added by the
preceding example).

Set databaseItem = CommandBars("Worksheet Menu Bar").Controls("File")
 .Controls("Open Database")
databaseItem.BeginGroup = True

Microsoft Office 97/Visual Basic Programmer's Guide Page 197 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Adding and Modifying Shortcut Menus

You can add and modify custom shortcut menus by using the Customize dialog
box in Microsoft Access, or by using Visual Basic in Microsoft Excel. In Microsoft
Access, Word, and PowerPoint, you can modify builtin shortcut menus (and
custom shortcut menus in Microsoft Access) by using the Customize dialog
box.

With Microsoft Access, you can assign custom shortcut menus to reports, forms,
and controls on forms; the assigned shortcut menu is displayed whenever the
user rightclicks the corresponding object. For information about working with
shortcut menus in Microsoft Access reports and forms, see Chapter 1 in Building
Applications with Microsoft Access 97.

Microsoft Excel provides an event — BeforeRightClick — that you can respond to
by modifying a builtin shortcut menu or displaying a custom shortcut menu.

Note Word and PowerPoint don't provide a way to display a custom shortcut
menu when the user rightclicks in the application window.

Using the Customize Dialog Box

In Microsoft Access, the Customize dialog box provides a convenient way to
add a custom shortcut menu.

To add a shortcut menu in Microsoft Access

1. If the Customize dialog box isn't already open, point to Toolbars on the
View menu, and then click Customize.

2. On the Toolbars tab, click New.

3. In the Toolbar name box, type a name for the new shortcut menu, and
then click OK.

An empty, floating toolbar with the name you typed is displayed.

4. Click Properties to display the Toolbar Properties dialog box.

5. In the Type box, click Shortcut Menu.

The empty, floating toolbar is no longer displayed. To display the shortcut
menu from the Customize dialog box, click the Toolbars tab, and then
select the check box next to Shortcut Menus in the Toolbars box. The
toolbar that contains all the shortcut menus is displayed; the shortcut
menu you just created appears on the last menu on the toolbar.

In Microsoft Access, Word, and PowerPoint, you can modify builtin shortcut
menus by using the Customize dialog box. (In Microsoft Access, you can also
modify custom shortcut menus in this way.) To add a submenu to a shortcut
menu, follow the same steps as are given in "Adding Submenus" earlier in this

Microsoft Office 97/Visual Basic Programmer's Guide Page 198 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

section. To add a command, follow the same steps as are given in "Adding and
Grouping Commands" earlier in this section. Remember to select the check box
next to Shortcut Menus in the Toolbars box to display a toolbar that contains
all the shortcut menus that are available while the Customize dialog box is
open.

Using Visual Basic

You use the Add method of the CommandBars collection to create a new
shortcut menu; setting the Position argument of the Add method to
msoBarPopup indicates that the CommandBar object you're creating can be
displayed as a shortcut menu. The following example creates a new shortcut
menu named "Shortcuts1."

Set cstm = CommandBars.Add(Name:="Shortcuts1", Position:=msoBarPopup,
 MenuBar:=False, Temporary:=False)

In Microsoft Excel, Word, and PowerPoint, you must use Visual Basic to create a
new shortcut menu. In Microsoft Access, you have the option of using either
Visual Basic or the Customize dialog box.

To modify a custom or builtin shortcut menu in any Microsoft Office application
by using Visual Basic, you use the same techniques as are described earlier in
this section for using Visual Basic to add submenus or commands to a menu.
You use CommandBars(name), where name is the name of a shortcut menu,
to return a CommandBar object that represents that shortcut menu. Then you
can add or modify the elements of the Controls collection available from that
CommandBar object.

Deleting Menu Components

You can delete builtin or custom items from menus, you can delete builtin or
custom menus from menu bars, and you can delete custom menu bars. Note,
however, that although you can delete all the items on shortcut menus and
builtin menu bars, you cannot delete the shortcut menus or builtin menu bars
themselves.

Deleting builtin menu components can help you tailor your Visual Basic
application to the needs of the user. For example, you might want to delete a
builtin command from a menu and replace it with a custom version of the
command that performs specialized tasks for the user. Or you might want to
remove certain menu items to simplify the interface or reduce the possibility
that inexperienced users will choose commands you didn't intend for them to
use.

Note You can restore builtin menu bars, menus, or menu items that you've
deleted. However, you cannot restore custom menu bars, menus, or menu items
that you've deleted; you must recreate them.

Using the Customize Dialog Box

With the Customize dialog box open, you can delete any menu component.

Microsoft Office 97/Visual Basic Programmer's Guide Page 199 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

To delete a menu system component

1. If the Customize dialog box isn't already open, point to Toolbars on the
View menu, and then click Customize.

2. If the menu bar that contains the menu component you want to delete
isn't visible, select the check box next to the name of that menu bar in the
Toolbars box on the Toolbars tab.

3. Rightclick the menu component you want to delete, and then click Delete
on the shortcut menu.

To delete an entire custom menu bar, open the Customize dialog box, click the
name of the menu bar in the Toolbars box on the Toolbars tab, and then click
the Delete button. You cannot delete builtin menu bars.

Using Visual Basic

Use the Delete method to delete a custom menu bar, a custom or builtin drop-
down menu or submenu, or a custom or builtin menu item. You cannot delete a
builtin menu bar or a shortcut menu.

The following Microsoft Excel example deletes the Edit menu from the menu bar
for charts.

CommandBars("Chart Menu Bar").Controls("Edit").Delete

The following example deletes the custom menu bar named "Custom Menu Bar."

CommandBars("Custom Menu Bar").Delete

For information about restoring builtin menu components that you've deleted,
see the following section.

Restoring Builtin Menu Components

You can restore builtin menu bars, menus, or menu items that you've deleted.
However, you cannot restore custom menu bars, menus, or menu items that
you've deleted; you must recreate them.

Using the Customize Dialog Box

You can use the Customize dialog box to restore a builtin menu or submenu to
once again contain its original, builtin set of menu items. Note that if you
restore a menu, all the submenus on that menu are restored. Likewise, if you
restore a builtin menu bar, all the menus and submenus on that menu bar are
restored.

To restore a builtin menu

Microsoft Office 97/Visual Basic Programmer's Guide Page 200 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

1. If the Customize dialog box isn't already open, point to Toolbars on the
View menu, and then click Customize.

2. If the menu bar that contains the menu you want to restore isn't visible,
select the check box next to the name of that menu bar in the Toolbars
box on the Toolbars tab.

3. Rightclick the menu or submenu you want to delete, and then click
Restore on the shortcut menu.

To restore a builtin menu bar, open the Customize dialog box, click the name
of the menu bar in the Toolbars box on the Toolbars tab, and then click the
Restore button.

Using Visual Basic

Use the Reset method to reset the components of a builtin menu bar, menu, or
submenu.

The following Microsoft Excel example resets the Edit menu on the menu bar for
charts.

CommandBars("Chart Menu Bar").Controls("Edit").Reset

The following Word example resets the builtin menu bar.

CommandBars("Menu Bar").Reset

RunTime Modifications to the Menu System

You can program the menu system you created at design time to respond
dynamically to changing conditions at run time. You can replace the default
menu bar with a custom menu bar that you've designed. If a particular menu
item is an inappropriate choice in certain contexts, you can remove it, hide it, or
disable it to prevent the user from selecting it (disabling a menu item is also
called dimming the menu item, or making it gray). If a menu item represents an
option with two possible states, you can make the command's button image
appear pushed down to show that the option is turned on or appear flat to show
that it's turned off. Finally, you might want to rename a menu item in response
to current conditions. For example, in Microsoft Excel, clicking the Freeze
Panes command on the Windows menu causes the command to be renamed
Unfreeze Panes.

Note that although you can make designtime changes to the menu system by
using either the Customize dialog box or Visual Basic, you must use Visual
Basic to make any runtime changes.

Displaying a Custom Menu Bar

To display a custom menu bar instead of the active menu bar, you set the

Microsoft Office 97/Visual Basic Programmer's Guide Page 201 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Visible property of a CommandBar object that represents that custom menu
bar to True. (For information about creating a menu bar that can replace the
active menu bar, see "Adding a Custom Menu Bar" earlier in this chapter.) The
newly visible menu bar replaces the active menu bar automatically. You set the
Visible property to False to display the default menu bar again when your
Visual Basic application finishes running.

Whenever a user starts a Microsoft Office application, the default menu bar is
displayed. In Word, you can replace the default menu bar with a custom menu
bar at startup — the last menu bar that was visible when the Normal template
was saved before quitting is the default menu bar when Word is started again.
You can also set the Visible property of a menu bar to True in an Open event
procedure to replace the default menu bar. In Microsoft Excel and PowerPoint,
you must use an event procedure or a macro to replace the default menu bar.

For information about specifying form, report, and global menu bars in Microsoft
Access, see Chapter 1 in Building Applications with Microsoft Access 97.

Displaying Menu Components Dynamically

If a menu component applies only to a particular document, it's best if that
menu component appears only when that document is active; this reduces
needless clutter in the interface. You can limit the lifetime of a given menu
component to the period during which the document it applies to is open or
active.

If you want a menu or menu item to appear only for a specific document, you
can set the Visible property to make the component visible every time the user
activates the document, and hide it every time the user deactivates the
document. If you want to associate a menu bar with a specific document, you
can set the Visible property to make the menu bar appear whenever the user
activates the document and then hide the menu bar whenever the user
deactivates the document, rather than actually adding or deleting the menu bar
each time.

To display menu components dynamically, you write the appropriate event
procedure that enables the component or makes it visible, and you write the
event procedure that disables the component or hides it. If the application
whose menu bars you're modifying doesn't support events, you cannot
customize the interface dynamically. An alternative in these applications is to
assign similar procedures to the OnAction property of other menu items or
toolbar buttons. If your application supports embedding ActiveX controls, you
can also modify the interface of the container application in response to an
event supported by that control.

Note Because Word stores customizations in documents and templates,
custom menu components are visible when the document or template is
available in the current context, and they're hidden when the document or
template isn't available. In contrast, because Microsoft Excel stores
customizations at the workspace level, you need to use the Visible property in
event code to dynamically change the interface.

Enabling or Disabling Menu Components

Microsoft Office 97/Visual Basic Programmer's Guide Page 202 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

If you want to prevent the user from choosing a particular menu item under
certain conditions, you can disable it. A disabled command still appears on the
menu, but it appears dimmed and doesn't respond to user actions. Use the
Enabled property to enable or disable a menu item. The Enabled property is
True if the menu item is enabled, and it's False if the menu item is disabled
(you cannot set the Enabled property for a builtin menu item). The following
Microsoft Excel example adds the Open Database command to the File menu on
the menu bar for worksheets and then disables the Open Database command.

CommandBars("Worksheet Menu Bar").Controls("File") _
 .Controls.Add("Open Database").Enabled = False

If you want to disable all the commands on a particular menu, you can disable
the menu itself. This effectively disables all the commands on the menu, as the
user no longer has access to them. The following Microsoft Excel example
disables the entire File menu on the menu bar for worksheets.

CommandBars("Worksheet Menu Bar").Controls("File").Enabled = False

Note You can disable all the menu items on a submenu, but you cannot
disable the submenu itself.

Indicating the State of a Menu Item

If a menu item represents an option that has only two possible states, you can
make the button image next to the item appear pushed down or appear flat to
indicate the current state of the option. The appearance should be changed to
the opposite of its current appearance — and the option turned on or off,
accordingly — each time the user clicks the menu item. You change the
appearance by setting the State property of the menu item.

To see how this works, suppose that the Microsoft Excel procedure in the
following example is assigned to the custom menu item Database on the View
menu on the menu bar for worksheets. This menu item offers the user the
option of viewing a worksheet either in database view or in worksheet view.
Every time the user clicks the Database menu item, the procedure switches the
button image next to the menu item between appearing pushed down and
appearing flat (that is, the procedure sets the State property and then switches
views).

Sub DatabaseView()
With CommandBars("Worksheet Menu Bar").Controls("View").Contr
If .State = msoButtonUp Then

.State = msoButtonDown
'Switch to database view

Else
.State = mosButtonUp
'Switch to worksheet view

End If
End With

End Sub

Microsoft Office 97/Visual Basic Programmer's Guide Page 203 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Every builtin and custom menu item has text and a button image; many builtin
menu items have blank button images. When you add an item to a menu by
using the Customize dialog box, you can specify and modify the item's button
image. At run time, you set the menu item's FaceId property to specify the
button image you want to display next to the menu item when its state
changes. To specify the button image you want to display next to a menu item,
you must find the builtin command with that button image, determine its ID,
and then assign that value to the FaceId property. (Changing the FaceId
property of a menu item doesn't change its functionality.) For information about
determining the builtin command ID numbers of a Microsoft Office application,
see "Menu Item and Toolbar Control IDs" later in this chapter.

The following Microsoft Excel example not only switches the state of the button
image next to the menu item, but it changes the image as well. When the user
switches to database view, the button image is switched to a grid (ID 987).
Likewise, when the user switches out of database view, the image is set to a
blank face (ID 1).

Sub DatabaseView()
With CommandBars("Worksheet Menu Bar").Controls("View").Contr
If .State = msoButtonUp Then

.FaceId = 987

.State = msoButtonDown
'Switch to database view

Else
.FaceId = 1
.State = mosButtonUp
'Switch to worksheet view

End If
End With

End Sub

Renaming a Menu Item

You can use the Caption property of a menu item to change the item's name in
response to changing conditions in your Visual Basic code. Suppose, for
example, that you've created a menu command that opens a database. After
the user has opened a database, you may want to replace the original command
with a command that closes the database. The following example shows how
you can accomplish this.

CommandBars("MyMenubar").Controls("File").Controls("Open Database") _
.Caption = "Close &Database"

When you rename a menu item this way, make sure that the other procedures
in your application reference the menu item by its new name (Close Database,
in this example).

You can also use variables to refer to a menu item. An advantage of this
technique is that variables continue to work even if the item's caption changes.
The following example sets a variable to the Open Database menu item.

Set openData = CommandBars("My Menubar").Controls _
("File").Controls("Open Database")

Microsoft Office 97/Visual Basic Programmer's Guide Page 204 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

You can change the caption later by using the code in the following example.

openData.Caption = "Close &Database"

Toolbars

Each Microsoft Office application provides a system of toolbars containing
toolbar controls that the user can click to gain access to frequently used
commands. Each toolbar can appear docked at the top, at the bottom, or on
either the left or right side of the application window, or as a floating window
positioned anywhere in the workspace. Each toolbar control is a simple,
graphical control with which the user can exchange information with your Visual
Basic application. To display any toolbar in an Office application, point to
Toolbars on the View menu, and then click the name of the toolbar you want
to display. To see additional available toolbars, open the Customize dialog box
and browse through the toolbars listed in the Categories box.

There are several types of controls that are classified as toolbar controls; these
are discussed in the following paragraphs.

The most common type of toolbar button is a simple button control that
contains a graphic. The graphic, called the button image, is a visual
representation of the command or option that the toolbar button activates. The
user can click one of these toolbar buttons to execute a command (for example,
clicking the New button on the Standard toolbar creates a new document) or
to alternate between the two possible states of an option represented by a
button (for example, clicking the Bold button on the Formatting toolbar
alternately applies bold formatting to and removes it from the selected text).

Another type of toolbar control is a button control that contains a graphic and
an attached dropdown palette. The user clicks the dropdown arrow to display a
palette and then clicks an option on the palette. The user clicks the button
control to apply the current option. For example, in Microsoft Excel, clicking the
dropdown arrow for the Font Color button displays a palette of font colors from
which the user can choose. Clicking this toolbar control's button applies the
indicated color to the selected text.

A text box, list box, or combo box can also be a toolbar control. The user either
types text in the box or clicks the dropdown arrow and then clicks an item in the
list. For example, on the Formatting toolbar, you can set the font size for the
selected text either by clicking an item in the dropdown list box contained in the
Font Size button or by typing an entry in the text box.

The last type of toolbar control is the popup control, which displays a menu of
other controls. A popup control on a toolbar is essentially the same as a menu
name on a menu bar. The Draw button on the Drawing toolbar in Microsoft
Excel, Word, or PowerPoint is an example of a popup control.

Note Although they share similar appearances and behavior, toolbar controls
and ActiveX controls aren't the same. You cannot add ActiveX controls to
toolbars, and you cannot add toolbar controls to documents or forms.

Microsoft Office 97/Visual Basic Programmer's Guide Page 205 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Now that you understand what toolbars and the various types of toolbar controls
are, you can study the specifics of modifying the toolbars and toolbar controls
described in the preceding paragraphs. In the following sections, you'll learn
how to make designtime and runtime changes to toolbars and toolbar controls.

Guidelines for Customizing Toolbars

The Microsoft Office applications offer you a wide range of ways to modify the
builtin toolbars to better serve the needs of the user. You can create new
toolbars; add new toolbar buttons to builtin or custom toolbars; modify the
image on a toolbar button face; and assign macros, ToolTip text, and status bar
text to toolbar buttons.

Whether you modify a builtin toolbar or create a new one depends on the extent
of the changes you want to make. Modifying a builtin toolbar makes sense if
you're adding or changing only a few toolbar buttons; creating a new toolbar
may be more convenient if you want to provide an entirely different assortment
of commands than are found on any of the builtin toolbars, or if you want to
present a number of custom toolbar buttons as a distinct group. Regardless of
how many changes you make, you can restore the builtin menu system to its
default state whenever you want.

In addition to the above changes, which are usually made at design time, you
can use Visual Basic procedures to change the properties of toolbars and toolbar
buttons in response to user input while your application is running (that is, at
run time). For example, you can hide a toolbar when the user no longer needs
it, move or resize a toolbar to keep it out of the user's way, disable a toolbar
button to prevent the user from clicking it at an inappropriate time, or switch
the appearance of a toolbar button between pushed down and flat every time
the user clicks it.

Using Menus

You can add popup controls — the same controls that display menus on menu
bars and submenus on menus — to any builtin or custom toolbar. Often, adding
a menu to a toolbar is a useful compromise between customizing a builtin menu
bar (which may not be as convenient as adding toolbar controls) and adding a
cumbersome number of toolbar controls (some of which may be dropped from a
wide toolbar that's docked). The Draw button on the Drawing toolbar in
Microsoft Excel, Word, or PowerPoint is an example of a menu on a toolbar.

To add menus, submenus, and menu items to toolbars, use the same steps as
were presented for adding such components to menu bars in "DesignTime
Modifications to the Menu System" earlier in this chapter.

Using Text Boxes, List Boxes, and Combo Boxes

In the Microsoft Office applications, you can add text boxes, list boxes, and
combo boxes to builtin and custom toolbars. These controls can be useful for
getting information from a user frequently, or for running a complex procedure
that can use the value of the control to determine a range of possible results.

The Customize dialog box supports adding builtin text boxes, list boxes, and

Microsoft Office 97/Visual Basic Programmer's Guide Page 206 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

combo boxes to any toolbar, but it doesn't support adding custom ones;
instead, you must use Visual Basic to add and design these controls. With the
Customize dialog box open, you can change the width of any builtin or custom
text box, list box, or combo box.

DesignTime Modifications to Toolbars

Designtime changes include creating a new toolbar; adding new or builtin
toolbar controls to a toolbar; deleting toolbar controls from a toolbar; grouping
or ungrouping toolbar controls; and changing the width of text box, list box, and
combo box toolbar controls. You can also select a new image or use the Button
Editor to customize the image associated with a particular toolbar control.

Adding a Custom Toolbar

In many cases, you can present a new set of commands by adding custom
toolbar controls to a builtin toolbar. But if you want to present a complete set of
commands in an easily accessible form, distinct from all builtin commands, you
can create a new toolbar. You do this by using either the Customize dialog box
or Visual Basic.

Using the Customize Dialog Box

The Customize dialog box provides a convenient way to add a custom toolbar.

To add a toolbar

1. If the Customize dialog box isn't already open, point to Toolbars on the
View menu, and then click Customize.

2. On the Toolbars tab, click New.

3. In the Toolbar name box, type a name for the new toolbar, and then
click OK.

An empty, floating toolbar with the name you typed is displayed.

The new toolbar is added to the list in the Toolbars box on the Toolbars tab.

Using Visual Basic

You use the Add method of the CommandBars collection to create a new
toolbar; setting the Position argument of the Add method to msoBarLeft,
msoBarTop, msoBarRight, msoBarBottom, or msoBarFloating indicates
whether the CommandBar object you're creating is a floating toolbar or a
docked toolbar. The following example creates and displays a new toolbar
named "Custom Tools."

Set cstm = CommandBars.Add(Name:="Custom Tools", Position:=msoBarFloa
 MenuBar:=False, Temporary:=False)
cstm.Visible = True

Microsoft Office 97/Visual Basic Programmer's Guide Page 207 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Adding and Grouping Controls

You can add controls to any builtin or custom toolbar, and you can visually
separate them (with lines) into logical groupings.

Using the Customize Dialog Box

The Customize dialog box provides an easy method for adding controls to
toolbars.

To add a builtin control to a toolbar

1. If the Customize dialog box isn't already open, point to Toolbars on the
View menu, and then click Customize.

2. If the toolbar you want to modify isn't visible, select the check box next to
the name of that toolbar in the Toolbars box on the Toolbars tab.

3. On the Commands tab, click a category of commands in the Categories
box.

The commands in the category you select are now listed in the Commands
box.

4. Drag a control from the Commands box to the position on the menu
where you want to add the control.

A vertical Ibeam on the toolbar indicates the position where the control
will be added when you release the mouse button.

Tip You can easily make a copy of any builtin toolbar control by displaying the
toolbar that contains that control and holding down CTRL while you drag the
control to another toolbar.

The Customize dialog box also provides a quick way to add a custom command
to a builtin or custom toolbar. However, each Microsoft Office application has a
different technique for using the Customize dialog box to do this. The following
paragraphs describe these differences.

Microsoft Access To add a control that runs a macro, follow the same steps
as in the procedure for adding a builtin control to a toolbar. In the Categories
box, click All Macros. Drag the macro you want from the Commands box to
the position on the toolbar where you want it to appear. To add a control that
runs a Function procedure, follow the same steps as in the procedure for
adding a builtin control to a toolbar. In the Categories box, click any category
and drag any item you want to the position on the toolbar where you want it to
appear. Rightclick the control, and then click Control Properties to open the
Control Properties dialog box. In the Caption box, delete the current name,
and then type the new name for your control. In the On Action box, type an
expression to run your Visual Basic Function procedure. The expression must
use the following syntax: =functionname().

Microsoft Office 97/Visual Basic Programmer's Guide Page 208 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Microsoft Excel Follow the same steps as in the procedure for adding a builtin
control to a toolbar; in the Categories box, click Macros, and then drag the
Custom Button control from the Commands box to the position on the toolbar
where you want the control to appear. Rightclick the new control, and then click
Assign Macro. In the Assign Macro dialog box, select the macro you want to
run. Use the commands on the shortcut menu to change the image of the
control.

Microsoft Word Follow the same steps as in the procedure for adding a built-
in control to a toolbar; in the Categories box, click Macros, and then drag a
macro from the Commands box to the position on the toolbar where you want
the control to appear. Use the commands on the shortcut menu for the new
control to change the control's name, image, and other display properties.

Tip In Word, if you write a procedure whose name is the same as that of a
builtin Word control (or if you write a procedure named "MAIN" in a module
whose name is the same as that of a builtin Word command), that procedure
will replace the builtin functionality of the control whenever the module that
contains it is available in the current context. Every copy of the control on
whatever toolbar it appears will run the replacement procedure. For more
information about controlling the context of your customizations, see "Scope of
Changes to the User Interface" earlier in this chapter. For more information
about modifying Word commands, see Chapter 7, "Microsoft Word Objects."

Microsoft PowerPoint Follow the same steps as in the procedure for adding
a builtin control to a toolbar; in the Categories box, click Macros, and then
drag a macro from the Commands box to the position on the toolbar where you
want it to appear. Use the commands on the shortcut menu for the new control
to change the control's name, image, and other display properties.

Modifying the Appearance of a Toolbar Button

The face of a button on a toolbar can be either the button image alone, the
button name alone, or the button image displayed next to the name. Whether a
button appears with just an image, just a name, or both is determined by its
"style." You set a button's style using commands on the shortcut menu while
the Customize dialog box is open. The following table describes the effect of
each style on toolbar buttons.

While the Customize dialog box is open, you can add or modify the image on a
toolbar button. The following table describes the techniques you can use.

Style What appears on a toolbar button

Default Style Button image only

Text Only (In Menus) Button image only

Text Only (Always) Name only

Image And Text Button image and name

Microsoft Office 97/Visual Basic Programmer's Guide Page 209 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Tip In Microsoft Access, you can use the Properties dialog box to set many
other properties of menu commands. For more information, see Chapter 1 in
Building Applications with Microsoft Access 97.

Grouping Controls

You can separate groups of related controls on a toolbar, using lines. The lines
themselves aren't controls; rather, you can set each control on a toolbar to
appear with a line before it. Use the Customize dialog box to set a command to
appear as the first control in a group of controls.

To begin a group of buttons on a toolbar

1. If the Customize dialog box isn't already open, point to Toolbars on the
View menu, and then click Customize.

2. If the toolbar that contains the control you want to modify isn't visible,
select the check box next to the name of that toolbar in the Toolbar box
on the Toolbars tab.

3. Rightclick the control you want to appear with a line before it, and then
click Begin Group.

The next time you rightclick that control, a check mark will be displayed
next to Begin Group on the shortcut menu. To remove the line before a
control, rightclick the control and then click Begin Group again (the check
mark will no longer appear).

To Do this

Use a predefined image Rightclick the button, point to Change Button
Image, and then click the image you want.

Copy and paste another button's
image

Rightclick the button that has the image you
want to use, and then click Copy Button
Image. Rightclick the button whose image
you're customizing, and then click Paste
Button Image.

Copy and paste an image from a
graphics program

Open the image you want to copy in a graphics
program. Select and copy the image
(preferably a 16 x 16 pixel image or portion).
Switch back to your application. Rightclick the
button, and then click Paste Button Image.

Edit the button's current image Rightclick the button, and then click Edit
Button Image. In the Button Editor dialog
box, you can change the color and shape of the
image, adjust the image's position on the
button, and preview your changes to the
image. When you finish editing the image, click
OK.

Reset a button to use its original
image

Rightclick the button, and then click Reset
Button Image.

Microsoft Office 97/Visual Basic Programmer's Guide Page 210 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Using Visual Basic

Use the Add method of the CommandBarControls collection to add a new
control to the CommandBar object that represents a particular toolbar. To add
a builtin control, you specify the ID number of the control by using the Id
argument of the Add method. The following example adds the Spelling control
to the toolbar named "Quick Tools."

Set mySpell = CommandBars("Quick Tools").Controls.Add(Id:=2)

For information about determining the builtin command ID numbers of an Office
application, see "Menu Item and Toolbar Control IDs" later in this chapter.

To add a custom control, you add a new control and then set the OnAction
property to specify a Visual Basic procedure to run whenever that control is
clicked. Setting the Type argument of the Add method to msoControlButton
indicates that a control is a button. Set the FaceId value of the control to the
ID of a builtin control whose face you want to copy. The following Microsoft
Excel example adds a button before the Save button on the Standard toolbar.
Microsoft Excel runs the OpenDatabaseProc Visual Basic procedure whenever
the user clicks the menu item. The example also sets the image on the button
to a grid (ID 987).

Set databaseItem = CommandBars("Standard").Controls. _
 Add(Type:=msoControlButton, Before:=3)
With databaseItem
 .OnAction:="OpenDatabaseProc"
 .FaceId = 987
End With

There are many properties of the objects that represent toolbar buttons that you
can set in Visual Basic to modify the appearance of a control. For more
information, see "Style Property" and "FaceID Property" in Help, as well as the
Help topics for other properties and methods of the CommandBarButton
object.

To set a control to begin a group of controls (that is, to be preceded by a line),
just set the BeginGroup property of the CommandBarButton,
CommandBarPopup, or CommandBarComboBox object that represents that
control to True. To remove the line, set the BeginGroup property of the
appropriate object to False. Use Controls(index), where index is the caption or
index number of a control, to return an object that represents the control.

Adding and Initializing Text Box, List Box, and
Combo Box Controls

You can add builtin text box, list box, and combo box controls by using the
Customize dialog box. Use the same steps that were given earlier in this
section for adding builtin controls.

To add and initialize the contents of custom text box, list box, and combo box
controls, you must use Visual Basic. You use the Add method of the

Microsoft Office 97/Visual Basic Programmer's Guide Page 211 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

CommandBarControls collection to add a text box, list box, or combo box; the
Type argument indicates the kind of control you're adding, as shown in the
following table.

You can use the Style property of the text box, list box, or combo box to
indicate whether the caption of the control should appear to the left of the box
itself.

The following example adds a combo box with the label "Quarter" to a custom
toolbar and assigns the macro named "ScrollToQuarter" to the combo box.

Set newCombo = CommandBars("Custom1").Controls _
 .Add(Type:=msoControlComboBox)
With newCombo
 .AddItem "Q1"
 .AddItem "Q2"
 .AddItem "Q3"
 .AddItem "Q4"
 .Style = msoComboNormal
 .OnAction = "ScrollToQuarter"
End With

While your Visual Basic application is running, the procedure assigned to the
OnAction property of the combo box control is called each time the user
changes the control. In the procedure, you can use the ActionControl property
of the CommandBars object to find out which control was changed and to
return the changed value. The ListIndex property will return the item that was
entered in the combo box.

Deleting Toolbar Controls

Deleting builtin toolbar controls can help you tailor your Visual Basic application
to the needs of the user. For example, you may want to delete a builtin control
from a toolbar and replace it with a custom version of that command, which will
perform specialized tasks for the user. Or you may want to remove certain
controls to simplify the interface or reduce the possibility that inexperienced
users will choose commands you didn't intend for them to use.

Note You can restore builtin toolbars or toolbar controls that you've deleted.
However, you cannot restore custom toolbars or toolbar controls that you've
deleted; you must recreate them.

Using the Customize Dialog Box

With the Customize dialog box open, you can delete any toolbar control.

To delete a toolbar control

To add this control Specify this type

Text box msoControlEdit

List box msoControlDropDown

Combo box msoControlComboBox

Microsoft Office 97/Visual Basic Programmer's Guide Page 212 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

1. If the Customize dialog box isn't already open, point to Toolbars on the
View menu, and then click Customize.

2. If the toolbar that contains the toolbar control you want to delete isn't
visible, select the check box next to the name of that toolbar in the
Toolbars box on the Toolbars tab.

3. Rightclick the control you want to delete, and then click Delete on the
shortcut menu.

To delete an entire custom toolbar, open the Customize dialog box, click the
name of that toolbar in the Toolbars box on the Toolbars tab, and then click
the Delete button. You cannot delete builtin toolbars.

Using Visual Basic

Use the Delete method to delete a custom toolbar or a custom or builtin toolbar
control. You cannot delete a builtin toolbar.

The following Microsoft Excel example deletes the Print control from the
Standard toolbar.

CommandBars("Standard").Controls("Print").Delete

The following example deletes the custom toolbar named "Custom Bar."

CommandBars("Custom Bar").Delete

You can restore builtin toolbar controls that you've deleted. For more
information, see the following section.

Restoring Builtin Toolbar Controls

You can restore builtin toolbar controls that you've deleted. However, you
cannot restore custom toolbars or toolbar controls that you've deleted; you
must recreate them.

Using the Customize Dialog Box

You can use the Customize dialog box to restore a builtin toolbar to its builtin
set of controls.

To restore a builtin toolbar

1. If the Customize dialog box isn't already open, point to Toolbars on the
View menu, and then click Customize.

2. On the Toolbars tab, select the builtin toolbar you want to restore.

3. Click Restore.

Microsoft Office 97/Visual Basic Programmer's Guide Page 213 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Using Visual Basic

Use the Reset method to reset the components of a builtin toolbar.

The following Microsoft Excel example resets the Standard toolbar to its default
set of controls.

CommandBars("Standard").Reset

RunTime Modifications to Toolbars

You can program the toolbars you create at design time to respond dynamically
to changing conditions at run time. If a particular control is an inappropriate
choice in certain contexts, you can remove it or disable it to prevent the user
from clicking it. If a control represents an option with two possible states, you
can make the control appear pushed down to show that the option is turned on
or appear flat to show that it's turned off.

Note that although you can make designtime changes to toolbars by using
either the Customize dialog box or Visual Basic, you must use Visual Basic to
make any runtime changes.

Displaying or Hiding Toolbars and Toolbar Controls

A toolbar takes up screen space that could otherwise be used to display data;
you can display a toolbar when necessary and hide it when the user no longer
needs it. A toolbar is visible if its Visible property is True, and it's not visible if
this property is False. Setting this property to True corresponds to selecting
the check box next to the name of that toolbar on the Toolbars tab in the
Customize dialog box and then clicking OK.

The following Microsoft Excel procedure, which is assigned to the View
MyToolbar menu item on the View menu, switches the state of the menu item
and the Visible property of the toolbar every time the user clicks the menu
item. When the toolbar is made visible, it reappears in the same position it
occupied when it was made invisible.

Sub ViewMyAppToolbar()
With CommandBars("Worksheet Menu Bar").Controls("View").Contr

If .State = msoButtonUp Then
.State = msoButtonDown
CommandBars("MyAppTools").Visible = True

Else
.State = msoButtonUp
CommandBars("MyAppTools").Visible = False

End If
End With

End Sub

When a toolbar is visible, the user can click any control on it to run that
control's assigned procedure.

Microsoft Office 97/Visual Basic Programmer's Guide Page 214 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

If you want a specific toolbar control to appear only when certain conditions
exist, you can hide or show the toolbar control at run time. By setting the
Visible property to True or False, you can effectively add a control to or
remove a control from the user's workspace without actually deleting the
control.

Note Because Word stores customizations in documents and templates,
custom toolbars and toolbar controls are visible when the document or template
is available in the current context, and they're hidden when the document or
template isn't available. In contrast, because Microsoft Excel stores
customizations at the workspace level, you need to use the Visible property in
event code to dynamically change the interface.

Moving and Resizing Toolbars

You may want to adjust the prominence of a toolbar on the screen in response
to changing conditions while your application is running. You can do this by
changing the size or position of the toolbar. Toolbars support several properties
you can use to resize them; to dock them at the top, bottom, left edge, or right
edge of the application window; or to position them elsewhere on the screen (if
they're are floating toolbars). For more information about the properties and
methods you can use with CommandBar objects that represent toolbars, see
"CommandBar Object" in Help, and use the jumps at the top of the topic to
display the lists of properties and methods.

Restoring a Builtin Toolbar

If one of the default toolbars has been modified — either by a user or by a
Visual Basic procedure — you can return the toolbar to its default state by using
the Reset method. Using this method corresponds to selecting the name of the
customized builtin toolbar on the Toolbars tab in the Customize dialog box
and then clicking Reset.

The following example resets all the toolbars to their default state and
simultaneously deletes all the custom toolbars.

For Each cb In CommandBars
If cb.BuiltIn Then

cb.Reset
Else

cb.Delete
End If

Next

Caution Be careful when you use the Reset method; it not only restores
any builtin toolbar controls that have been deleted, but it also deletes any
custom toolbar controls that have been added. Keep in mind that another
macro may have added custom toolbar controls to the toolbar, and
resetting the toolbar will remove these controls as well. To avoid these
problems, remove any toolbar controls added by your application one by
one, without resetting the entire toolbar.

Microsoft Office 97/Visual Basic Programmer's Guide Page 215 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Enabling or Disabling Toolbar Controls

You may want to control the availability of a toolbar control while your
application is running, to prevent the user from clicking the button at
inappropriate times. To do this, you can dynamically enable and disable the
toolbar control. When a toolbar control is disabled, it beeps when it's clicked and
doesn't run the procedure associated with it. Use the Enabled property to set or
return the state (enabled or disabled) of a toolbar control.

The following example disables button three on the Standard toolbar.

CommandBars("Standard").Controls(3).Enabled = False

Indicating the State of Toolbar Buttons

If a toolbar button represents an option with two possible states, you can
change the appearance of the button to indicate the current state of the option:
When the option is turned on, the associated button appears pushed down;
when the option is turned off, the button appears flat.

The State property for a toolbar button is msoButtonDown if the button
appears pushed down; this property is msoButtonUp if the button appears flat.
The following procedure, which is assigned to the new toolbar control Database
View, changes the appearance of the control before switching between special
views on the worksheet.

Sub DatabaseView()
With CommandBars("MyAppToolbar").Controls(3)

If .State = msoButtonDown Then
.State = msoButtonUp
'Switch to database view

Else
.State = msoButtonDown
'Switch to worksheet view

End If
End With

End Sub

Modifying Text Box, List Box, and Combo Box
Controls

If you add custom text box, list box, or combo box controls to a toolbar, you can
make runtime changes such as changing the current value of the text box
portion of the control and adding or removing items from the list portion of the
control (for list boxes and combo boxes only).

You can set the Text property of a text box, list box, or combo box control to
reflect a change in the state of your Visual Basic application. For example, if the
user clicks a toolbar button that runs a procedure named "MaxZoom" (a custom

Microsoft Office 97/Visual Basic Programmer's Guide Page 216 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

procedure that displays the active document at maximum zoom), the text box
portion of a combo box control that's used to adjust the zoom more precisely
and display a percentage value can be set to the maximum zoom percentage.

You can use the AddItem and RemoveItem methods to add and remove items
(by index number) from the list portion of a list box or combo box control. For
example, if you created a list box control in Word that tracks the styles the user
applies during a session, you can add the name of a style to the list portion of
the control each time the user applies a style.

Note Be careful when you add or remove an item in a list box or combo box
control; this causes the index numbers of all the items to shift.

You can use other properties and methods of list box and combo box controls to
change the appearance of a control at run time. For example, you can add and
adjust a header list for the control (a header list is the group of list items at the
top of the list portion of a control that are separated from the rest of the list
items by a line.) For more information about using text box, list box, and combo
box controls, see "Using command bars" in Help.

Menu Item and Toolbar Control IDs

Each Office application contains a unique set of menu bars and toolbars and a
unique set of available menu items and toolbar controls. (Note that only a
subset of the available menu items and toolbar controls actually appears on an
application's builtin menu bars and toolbars.) Each application stores its menu
bars and toolbars in a unique way. For information about how menu bars and
toolbars are stored, see "Scope of Changes to the User Interface" earlier in this
chapter.

Whereas the functionality associated with each builtin menu item and toolbar
control belongs to a specific Office application, the caption, button image, width,
and other default properties of each menu item and toolbar control are stored in
one resource shared by all the applications. You can use ID numbers to find
specific menu items and toolbar controls in this resource.

Note This resource also contains the default properties of the popup controls
that display builtin menus. However, those popup controls don't contain the
builtin menu items on those menus; that is, the popup controls are empty.

Although you can usually ignore the ID of a menu item or control and instead
use the Customize dialog box to make changes to a builtin or custom menu or
toolbar, you may need to refer to the ID of an item to make certain kinds of
changes to your custom interface. The following are some of the situations in
which you'll need to refer to an item's ID:

� You want to assign an item to a builtin or custom menu or toolbar when
that item isn't available anywhere in the Customize dialog box at design
time.

� You want to add a builtin item to a menu or toolbar at run time.

� You want to copy a particular button's image to another button at run

Microsoft Office 97/Visual Basic Programmer's Guide Page 217 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

time.

You can assign the ID of a builtin item to the Id argument of the Add method
for the CommandBarControls collection, and you can assign the ID of a an
item to the FaceId property of any custom or builtin control.

Note Even though the shared resource contains information about every menu
item and toolbar control in all the Office applications, you can only add items
and controls whose functionality is contained in the application you're working
in. For example, you cannot add the Microsoft Excel Delete Rows toolbar button
(ID 293) to a toolbar in Word. You can, however, copy the face of the Delete
Rows toolbar button from Microsoft Excel to a toolbar control in Word.

To determine the IDs of the builtin menu items and toolbar controls in a specific
Office application, you can do any of the following:

� In a module, write code to assign a menu item or toolbar control that
already appears on a menu or toolbar to an object variable, and then use
debugging tools to inspect the value of the Id property of that object.
Using that ID, you can add a copy of the item or control to another menu
or toolbar by using the Add method, or you can copy the image to
another button by assigning the ID to another button's FaceId property.

� Run the following procedure in one of the Office applications to create a
text document that lists the IDs and captions of all the builtin commands
in that application.

Sub outputIDs()
Const maxId = 4000
Open "c:\ids.txt" For Output As #1
' Create a temporary command bar with every
' available item and control assigned to it.
Set cbr = CommandBars.Add("Temporary", msoBarTop, False, True)
For i = 1 To maxId
 On Error Resume Next
 cbr.Controls.Add Id:=i
Next
On Error GoTo 0
' Write the ID and caption of each control to the output file.
For Each btn In cbr.Controls
 Write #1, btn.Id, btn.Caption
Next
' Delete the command bar and close the output file.
cbr.Delete
Close #1
End Sub

� Run the following procedure in one of the Office applications to create a
set of custom toolbars that contain as many buttons as there are valid
FaceId property values in Office; each button's image and ToolTip text is
set to one of those values. You can crossreference the ID of a builtin
command (see the preceding procedure) to the FaceId property value of
a button on one of these toolbars, and vice versa.

Sub MakeAllFaceIds()

Microsoft Office 97/Visual Basic Programmer's Guide Page 218 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

'Make fourteen toolbars with 300 faces each.
'Note that maxId is greater than last valid ID, so
'error will occur when first invalid ID is used.
Const maxId = 3900
On Error GoTo realMax
For bars = 0 To 13
 firstId = bars * 300
 lastId = firstId + 299
 Set tb = CommandBars.Add
 For i = firstId To lastId
 Set btn = tb.Controls.Add
 btn.FaceId = i
 btn.TooltipText = "FaceId = " & i
 Next
 tb.Name = ("Faces " & CStr(firstId) & " to " _
 & CStr(lastId))
 tb.Width = 591
 tb.Visible = True
Next
'Delete the button that caused the error and set toolbar name
realMax:
btn.Delete
tb.Name = ("Faces " & CStr(firstId) & " to " _
 & CStr(i - 1))
tb.Width = 591
tb.Visible = True
End Sub

Note The IDs of the popup controls for builtin menus are in the range 30002
to 30426. Remember that these IDs return empty copies of the builtin menus.

Contents

� Using the Microsoft Office Assistant
� Using the Microsoft Office Assistant Balloon

Microsoft Office 97 uses the Office Assistant to provide a single source for online
Help. The Office Assistant can offer tips on the task you're performing, answer
questions specific to the Office application you're using, and deliver messages
from the application. You can use the Office Assistant in your own Visual Basic
application to deliver information, guide the user through a task, and even run
your procedures in response to the user's selecting a control in the Office
Assistant balloon. You control the Office Assistant, the balloon, and all of the
items inside the balloon by using the Assistant portion of the Microsoft Office
object model.

Note The Office Assistant isn't available in Microsoft Access 97 applications
you build using the runtime version of Microsoft Access.

C H A P T E R 9 Microsoft Office 97/Visual Basic Programmer's Guide

Microsoft Office Assistant

Microsoft Office 97/Visual Basic Programmer's Guide Page 219 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Using the Microsoft Office Assistant

In an Office application, the user chooses which Assistant he or she wants to
see and then specifies the circumstances under which the Assistant is to be
displayed. In a Visual Basic application, you can make the Assistant visible,
animate it, move its window to a different location on the screen, and display
balloons that contain various kinds of information and controls.

Note You cannot record the Assistant's animation or balloon actions, and you
cannot record options selected in the Office Assistant dialog box.

The first step in implementing the Assistant in your Visual Basic application is to
determine how involved your user wants the Assistant to be in delivering
information. On the Options tab in the Office Assistant dialog box, the user
sets his or her preferences for the placement of the Assistant, the type of Help
topics that the Assistant is to offer, and the Assistant's response to the F1 key.

You can use properties of the Assistant object to determine the choices the
user has made regarding the Assistant. Each of the user's preferences
corresponds to a property of the Assistant object. For example, the
AssistWithHelp property returns True if the user has selected the Respond to
F1 key option on the Options tab in the Office Assistant dialog box.

If the user's preferences indicate that he or she wants the Assistant's help, you
can program your application to make full use of the Assistant by displaying
text or prompts inside a balloon that would otherwise be displayed in a message
box or input box, and you can make the Assistant available to offer tips that are
automatically sent from the application.

There are 34 different animations available for the Assistant. You can program
the Assistant to respond to a particular circumstance with a particular animation
by assigning one of the MsoAnimationType constants to the Animation
property of the Assistant object. Depending on the Assistant the user has
chosen, setting the Animation property may or may not result in any obvious
animation. However, the MsoAnimationType constants are valid for all
Assistants.

Note You can assign one of the msoAminationType constants to the Balloon
object as well. If you do this, the Assistant will perform the specified animation
when the balloon is displayed. For more information, see "Using the Microsoft
Office Assistant Balloon" later in this chapter.

The following example has the Assistant display a message if the Display
alerts option is selected on the Options tab in the Office Assistant dialog
box, or displays a standard message box if this option isn't selected. The
Assistant is animated when it displays the message, and after the user closes
the balloon, the Visible property of the Assistant is set to the value it had
before the example ran.

hdng = "Empty field"
msg = "You need to enter a part number " _
 & "before you can proceed."
If Assistant.AssistWithAlerts = True Then

Microsoft Office 97/Visual Basic Programmer's Guide Page 220 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

 With Assistant
 userState = .Visible
 .Visible = True
 Set bln = .NewBalloon
 With bln
 .Mode = msoModeModal
 .Button = msoButtonSetOK
 .Heading = hdng
 .Text = msg
 .Animation = msoAnimationGetAttentionMinor
 ret = .Show
 End With
 .Visible = userState
 End With
Else
 ret = MsgBox(msg, vbOKOnly, hdng)
End If

Using the Microsoft Office Assistant Balloon

The Balloon object is the most important part of the Office Assistant object
model. You use balloons to deliver messages to your user or to request
information from the user that you can use in your Visual Basic application.
There are several types of balloons, each of which can contain labels and check
boxes, as well as certain types of graphics. Only one balloon can be visible at a
time, but you can create multiple Balloon objects and store them in variables
for use at any time, and you can reuse any Balloon object by resetting its
properties.

Creating Balloons

To create a balloon, you use the NewBalloon property of the Assistant object.
The balloon that's returned by the property is blank. Use the Mode property to
specify how you want the balloon to respond to the user's actions. To add a
heading to the balloon, you use the Heading property, and to add text to the
body of the balloon, you use the Text property. You can also add controls or
graphics if you want. Finally, you use the Show method to display the balloon
you've designed. The Show method displays the balloon as it exists (that is, as
you've designed it) at that point in time; therefore, it's important to use the
Show method after you've set or changed any balloon properties.

There are several types of balloons you can display; the type of balloon a
Balloon object represents is determined by the Mode property, which you can
set to one of the following MsoModeType constants: msoModeModal,
msoModeAutoDown, or msoModeModeless.

A modal balloon (msoModeModal) demands the user's complete attention
because keyboard or mouse activity is restricted to the balloon while the balloon
is displayed. A modal balloon is best used for alerts or critical messages. The
following example uses a modal balloon to prompt the user to confirm whether
the active file should be closed without changes being saved. You can use the
value of the button that's clicked (which is assigned to ret) to determine
whether or not the event should continue. You can use this example as part of
an event procedure that runs whenever a file is closed, or you can use it in a
series of balloons leading the user through a process.

Microsoft Office 97/Visual Basic Programmer's Guide Page 221 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Set bln = Assistant.NewBalloon
With bln
 .Mode = msoBalloonModal
 .Heading = "Warning"
 .Text = "If you close this file without saving it, " _
 & "this macro cannot proceed. Close without saving?"
 .Button = msoButtonSetOkCancel
 ret = .Show
End With

An AutoDown balloon (msoModeAutoDown) is dismissed when the user clicks
or types anywhere in the application. This type of balloon is best used for quick
messages that aren't critical to the task at hand. The following example displays
a tip for using a custom dialog box (the code can run in an event procedure for
a dialog box control). Because the balloon is an AutoDown balloon, the message
disappears as soon as the user clicks anywhere in the dialog box.

hdng = "Selecting a data source"
msg = "In this dialog box, you can specify a workbook " _
 & "or an external table of data to use for input." _
 & "If you use external data, it must contain delimited" _
 & "fields, rather than fixed-length fields."
With Assistant
 Set bln = .NewBalloon
 With bln
 .Mode = msoModeAutoDown
 .Button = msoButtonSetOK
 .Heading = hdng
 .Text = msg
 ret = .Show
 End With
End With

While a modeless balloon (msoModeModeless) is displayed, the user can
complete a task in the application; that is, the user can type in the document
and use menu and toolbar commands. You can use a modeless balloon to
display procedures or tips for using your Visual Basic application, for the benefit
of the user.

When the user clicks a control or button in a modeless balloon, a callback
procedure is called. Your Visual Basic application must contain a procedure
(whose name is assigned to the Callback property) that responds to the action
the user takes. For example, if the user clicks the OK button, he or she wants to
dismiss the modeless balloon; the callback procedure should respond
accordingly by applying the Close method to the balloon. The following example
displays a series of steps for the user to follow while the balloon remains
displayed. The callback procedure closes the balloon when the user clicks OK.

Sub DisplaySteps()
Set bln = Assistant.NewBalloon
With bln
 .Mode = msoModeModeless
 .Callback = "StepsCallback"
 .BalloonType = msoBalloonTypeNumbers
 .Button = msoButtonSetOK
 .Heading = "To create a new report"
 .Labels(1).Text = "On the File menu, click New Report."

Microsoft Office 97/Visual Basic Programmer's Guide Page 222 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

 .Labels(2).Text = "In the New Report dialog box, select the period
 & "(monthly, quarterly, or yearly)."
 .Labels(3).Text = "Click the Create button."
 ret = .Show
End With
End Sub

Sub
StepsCallback(bln As Balloon, btn As Long, priv As Long)
 bln.Close
End Sub

For more information about the Callback property and callback procedures, see
"Using Callback Procedures" later in this chapter.

Managing Multiple Balloons

There isn't a collection of Balloon objects. Instead, you can create an array to
store more than one balloon variable. You can create and store empty balloons,
or you can create and store balloons complete with heading, text, and controls.
The following example creates an array and adds three Balloon objects, with
numbered headings, to the array.

Dim myBlnArray(3) as Balloon

With Assistant
 For i = 1 To 3
 Set myBlnArray(i) = .NewBalloon
 myBlnArray(i).Heading = i
 Next
End With

The following example displays the second balloon in the array.

myBlnArray(2).Show

Alternatively, you can set a separate object variable for each balloon you
create; this way, you can reference the variable at any time. If you declare
balloon variables globally, you can call them from any procedure in your
program.

Adding Text and Controls to Balloons

Every balloon can contain a heading and text. By default, a balloon contains an
OK button at the bottom, but it can also contain any of a variety of button
combinations, or no buttons at all (although showing no buttons requires a
modeless balloon with button labels; for information about button labels, see
"Adding and Modifying Labels" later in this section). To provide emphasis or
greater detail, you can add an icon to the heading, and you can add bitmaps,
Windows metafiles, or Macintosh pict files anywhere text can appear in the
balloon. Also, every balloon can contain as many as five numbered, bulleted, or
button labels, and as many as five check boxes; you can use these elements to
deliver or return detailed information from the user.

Microsoft Office 97/Visual Basic Programmer's Guide Page 223 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Setting the Heading and Text

The most basic elements of a balloon are the heading and the simple text that
appear at the top of the balloon. Both the heading and text are optional; you
can display a balloon that contains neither one. You set the heading and text by
using the Heading and Text properties. You specify which buttons to display at
the bottom of the balloon by setting the Button property to one of the
MsoButtonSetType constants. The following example displays a simple
message in a modal balloon.

Set bln = Assistant.NewBalloon
With bln
 .Mode = msoModeModal
 .Button = msoButtonSetYesNo
 .Heading = "Empty file"
 .Text = "The file you specified does not contain any data. Quit no
 ret = .Show
End With

The Show method returns a value that indicates which button was clicked to
close the balloon. You can use the return value to make a decision about what
action to take next. In the preceding example, if the Show method set the
value of ret to msoBalloonButtonYes, the example can proceed to quit the
running macro as the user requested.

Adding Icons and Bitmaps

To get the user's attention, you can add icons and bitmaps to Office Assistant
balloons. Icons are displayed at the top of the balloon, to the left of the heading
text, whereas bitmaps can be displayed anywhere in the balloon. To add an
icon, assign one of the msoIconType constants to the Icon property of the
Balloon object. The following example displays a simple alert balloon.

Set bln = Assistant.NewBalloon
With bln
 .Mode = msoModeModal
 .Heading = "Attention Please"
 .Text = "That command is not available now."
 .Icon = msoIconAlert
 .Show
End With

To add a Windows or Macintosh bitmap to a balloon, specify the type (.bmp)
and the path of the bitmap. You can insert a bitmap can be inserted the balloon
text, the balloon heading, or a label. You can also include braces around text if
you format the text as shown in the following example. This example inserts a
Windows bitmap file into the text of a balloon; this will produce a balloon error
if Circles.bmp doesn't exist in the specified folder. For information about
handling balloon errors, see "BalloonError Property" in Help.

myBmp = "{bmp c:\Windows\circles.bmp}"
myText1 = "This text is before the picture,"
myText2 = " and this text is after the picture."
myText3 = " {{This is text in braces.}"

Microsoft Office 97/Visual Basic Programmer's Guide Page 224 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Set bln = Assistant.NewBalloon
With bln
 .Mode = msoModeAutoDown
 .Heading = "Displaying a Bitmap."
 .Text = myText1 & myBmp & myText2 & myText3
 .Show
End With

You can specify a graphic you want displayed by using the following syntax:
{type location sizing_factor}. In this syntax, type indicates the type of graphic
that will be added to the balloon, location should be the complete path and can
be a network location (\\server\folder\picture.bmp) or a local hard drive
(C:\folder\picture.bmp), and sizing_factor represents the width (in characters)
of the Windows metafile or the Macintosh picture (it has no effect on a .bmp
file). If proportional fonts are being used, sizing_factor represents the average
character width. You can use sizing_factor to reduce a large graphic to fit your
balloon, or to enlarge a small graphic to enhance the image. The following
example reduces the displayed size of the Windows metafile Clouds.wmf to a
20character width and inserts it as the heading in a balloon.

Set myBln = Assistant.NewBalloon
myWmf = "{wmf c:\graphics\clouds.wmf 20}"
With myBln
 .Mode = msoModeAutoDown
 .Heading = myWmf
 .Text = "Balloon with .wmf in heading"
 .Show
End With

Adding and Modifying Labels

There are three types of labels you can add to a balloon: numbered labels,
bulleted labels, and button labels. You can add as many as five labels to a given
balloon, but they must all be of the same type; you cannot mix numbers,
bullets, and buttons in the same balloon. To indicate which type of labels you
want, you set the BalloonType property of a balloon to one of the following
MsoBalloonType constants: msoBalloonTypeNumbers,
msoBalloonTypeBullets, or msoBalloonTypeButtons. To return a
BalloonLabel object that represents one of the numbered, bulleted, or button
labels, you use Labels(index), where index is a number from 1 through 5. You
set the Text property of the BalloonLabel object to specify the label's text.

Note If you try to reference a label greater than 5, an error occurs.

You can use numbered labels and bulleted labels to present related information
in a meaningful way. That is, rather than creating a complex string to assign the
Text property of a balloon, you can assign simple strings to the Text property
of as many as five numbers or bullets. The following example displays a modal
balloon with a list of troubleshooting suggestions for a macro.

Set bln = Assistant.NewBalloon
With bln
 .Mode = msoBalloonModal
 .Button = msoButtonSetOK
 .BalloonType = msoBalloonTypeBullets
 .Heading = "Tips for locating output"

Microsoft Office 97/Visual Basic Programmer's Guide Page 225 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

 .Text = "If you cannot locate the output log, consider the follow
 .Labels(1).Text = "Check the current folder name in the Save dial
 .Labels(2).Text = "Make sure you type the file name correctly."
 .Labels(3).Text = "If you saw the Empty File message, no log was
 ret = .Show
End With

You use button labels to let the user make choose from a list of two or more
possible actions. Using the return value of the Show property (in a modal or
AutoDown balloon) or the second argument passed to the callback procedure (in
a modeless balloon), you can determine which button label was clicked and take
the appropriate action.

The following example displays a list of three button labels. The variable x is set
to the return value of the Show method, which will be 1, 2 or 3, depending on
which button the user clicks (there's no OK button). In the example, a simple
message box displays the value of the variable x, but you can pass the value to
another procedure, or you can use the value in a Select Case statement.

Set b = Assistant.NewBalloon
With b
 .Mode = msoModeModal
 .Button = msoButtonSetNone
 .Heading = "Balloon heading"
 .Text = "Select one of these things:"
 .Labels(1).Text = "Choice One"
 .Labels(2).Text = "Choice Two"
 .Labels(3).Text = "Choice Three"
 x = .Show
End With
MsgBox x

The following example prompts the user to select either a network printer or a
local printer before a document is printed. The user can work in the application
(because the balloon is a modeless balloon) but is reminded that printing
cannot occur until a printer is selected. The ProcessPrinter procedure would
determine which button label was clicked, run the appropriate statements, and
then close the balloon.

Set bln = Assistant.NewBalloon
With bln
 .Mode = msoModeModeless
 .Button = msoButtonSetNone
 .Heading = "Select A Printer"
 .Text = "You must select a printer before printing."
 .Icon = msoIconAlert
 .Labels(1).Text = "Local printer"
 .Labels(2).Text = "Network printer"
 .Callback = "ProcessPrinter"
 ret = .Show
End With

For more information about the Callback property of a modeless balloon, see
"Using Callback Procedures" later in this section.

Adding and Modifying Check Boxes

Microsoft Office 97/Visual Basic Programmer's Guide Page 226 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

You use check boxes to let the user select one or more items in a list. By
default, each balloon contains five check boxes when it's created; however, you
must set the Text property for each check box you want to be visible. To return
a BalloonCheckbox object that represents one of the check boxes, you use
Checkboxes(index), where index is a number from 1 through 5.

Note If you try to reference a check box by using a number greater than 5, an
error occurs.

If you display a balloon that contains check boxes, the user can select one or
more of the check boxes before clicking a button. You can then use the value of
each check box (indicated by the Checked property) to control subsequent
statements or branching structures in your code. The following example displays
a balloon in which the user can select one, two, or three check boxes, or none.
A second balloon confirms which check boxes were selected.

Set a = Assistant.NewBalloon
Set b = Assistant.NewBalloon
With a
 .Mode = msoModeModal
 .Button = msoButtonSetOkCancel
 .Heading = "Print Regional Sales Data"
 .Text = "Select the region(s) you want to print."
 For i = 1 To 3
 .CheckBoxes(i).Text = "Region " & i
 Next
End With
retA = a.Show
If retA = msoBalloonButtonOK Then
 s = ""
 For i = 1 To 3
 If a.CheckBoxes(i).Checked = True Then
 If s = "" Then
 s = CStr(i)
 Else
 s = s & ", " & CStr(i)
 End If
 End If
 Next
 With b
 .Mode = msoModeModal
 .Heading = "Print Regional Sales Data"
 If s <> "" Then
 .Button = msoButtonSetYesNo
 .Text = "Please confirm that you want to print " & _
 "data for the following region(s): " & s
 Else
 .Button = msoButtonSetOK
 .Text = "You did not select any regions to print."
 End If
 retB = .Show
 End With
End If

Using Callback Procedures

If you create a modeless balloon, you must assign to the Callback property the
name of a callback procedure. A callback procedure must be written to receive

Microsoft Office 97/Visual Basic Programmer's Guide Page 227 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

three arguments: the first argument is a Balloon object that represents the
balloon that called the procedure; the second argument is a number that
indicates the index number or constant of the button label or button that was
clicked; and the third argument is a number that's used by wizards to control
the Assistant (unless you're developing a custom wizard, you can ignore the
third argument). The following example shows a valid declaration for a callback
procedure. Note that you can use any argument names you prefer in your
declarations.

Sub MyCallback(bln As Balloon, btn As Long, priv As Long)

Note You must assign the Callback property a string that indicates the correct
scope of the callback procedure in relation to the code you're writing, just as if
you were writing a statement to call the procedure directly. For example, if
you're writing code in a module and the callback procedure is in a Microsoft
Excel worksheet (Sheet1) in the same project, you would set the Callback
property to "Sheet1.MyCallback."

The following example displays a balloon that contains the names of three
printers. The callback procedure runs the appropriate printerspecific code and
then closes the balloon.

Sub TestCallback()
Set bln = Assistant.NewBalloon
With bln
 .Mode = msoModeModeless
 .Callback = "ProcessPrinter"
 .Button = msoButtonSetNone
 .BalloonType = msoBalloonTypeButtons
 .Heading = "Select a Printer"
 .Labels(1).Text = "Network Printer"
 .Labels(2).Text = "Local Printer"
 .Labels(3).Text = "Local Color Printer"
 .Show
End With
End Sub

Sub
ProcessPrinter(bln As Balloon, ibtn As Long, _
 iPriv As Long)
 Assistant.Animation = msoAnimationPrinting
 Select Case ibtn
 Case 1
 ' Insert printer-specific code
 Case 2
 ' Insert printer-specific code
 Case 3
 ' Insert printer-specific code
 End Select
 bln.Close
End Sub

C H A P T E R 10 Microsoft Office 97/Visual Basic Programmer's Guide

Shapes and the Drawing Layer

Microsoft Office 97/Visual Basic Programmer's Guide Page 228 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Contents

� Understanding the Shape, ShapeRange, and Shapes Objects
� Drawing a Shape on a Document, Worksheet, or Slide
� Editing a Shape
� Working with OLE Objects on a Document, Worksheet, or Slide
� Working with More Than One Shape

Visual Basic provides a common object model that represents the drawing layer
in Microsoft Excel 97, Word 97, and PowerPoint 97. The toplevel object in this
object model is the Shapes collection, which contains all the graphic objects —
such as AutoShapes, freeforms, OLE objects, and pictures — that you can add to
the drawing layer. (Note that shapes you insert into the text layer in Word
aren't included in the Shapes collection.)

This chapter covers the principal objects, properties, and methods used to
create and modify objects in the drawing layer in Microsoft Excel, Word, and
PowerPoint. For information about applicationspecific enhancements to the
drawing layer object model in PowerPoint, see Chapter 6, "Microsoft PowerPoint
Objects." For information about ActiveX controls (a special type of shape), see
Chapter 12, "ActiveX Controls and Dialog Boxes."

Understanding the Shape, ShapeRange, and
Shapes Objects

There are three different objects that represent shapes: the Shapes collection,
which represents all the shapes in the drawing layer of a Microsoft Excel, Word,
or PowerPoint document; the ShapeRange collection, which represents a
subset of the shapes in the drawing layer; and the Shape object, which
represents an individual shape. In general, you use the Shapes collection when
you want to add shapes to the drawing layer or iterate through all the shapes in
the drawing layer; you use the Shape object when you want to format or
manipulate a single shape; and you use the ShapeRange collection when you
want to format or manipulate multiple shapes the same way you work with
multiple selected shapes in the user interface.

Note A ShapeRange collection can have as few as one member or as many
members as there are shapes in the drawing layer. A ShapeRange collection
that contains a single member is essentially equivalent to a Shape object. You
can use a ShapeRange collection that contains all the members in the Shapes
collection to format all the shapes in the drawing layer at at the same time.
Properties and methods that apply to the Shape object also apply to the
ShapeRange collection . For information about how these properties and
methods behave when they're applied to a ShapeRange collection that contains
a single shape or to a ShapeRange collection that contains multiple shapes, see
"Working with More Than One Shape" later in this chapter.

Returning the Shapes Collection

To return the entire collection of shapes in the drawing layer, use the Shapes
property. The following example selects all the shapes in the drawing layer of

Microsoft Office 97/Visual Basic Programmer's Guide Page 229 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

myDocument.

myDocument.Shapes.SelectAll

Returning the Shape Object

Use Shapes(index), where index is the shape's name or the index number, to
return a Shape object that represents a shape on a slide. The following
example duplicates the third shape on myDocument and places it on the
Clipboard.

myDocument.Shapes(3).Duplicate

The following example duplicates the shape named "Red Square" on
myDocument.

myDocument.Shapes("Red Square").Duplicate

Each shape is assigned a default name (for example, "Rectangle 3") when you
add it to the Shapes collection. To give the shape a more useful, meaningful
name, use the Name property. The following example adds a rectangle to
myDocument and gives the rectangle the name "Red Square."

myDocument.Shapes.AddShape(msoShapeRectangle,144, 144, 72, 72).Name =

Tip The methods that add a shape to the drawing layer also return a reference
to the added shape, so you can add a shape and apply a property or method to
it in a single statement, as shown in the preceding example. For more
information, see "Drawing a Shape on a Document, Worksheet, or Slide" later in
this chapter.

Returning the ShapeRange Collection

Use Shapes.Range(index), where index is either the shape's name or index
number or an array of shape names or shape index numbers (or both), to return
a ShapeRange collection that represents a subset of the Shapes collection.
The following example sets the fill for shapes one and three on myDocument.

myDocument.Shapes.Range(Array(1, 3)).Fill.PresetGradient _
 msoGradientHorizontal, 1, msoGradientLateSunset

Use Selection.ShapeRange to return a ShapeRange collection that
represents all the shapes in the selection. Use Selection.ShapeRange(index),
where index is the shape's name or index number, to return a Shape object
that represents one of the shapes in the selection. The following example sets
the fill for the first shape in the selection.

ActiveWindow.Selection.ShapeRange(1).Fill.PresetGradient _
 msoGradientHorizontal, 1, msoGradientLateSunset

Microsoft Office 97/Visual Basic Programmer's Guide Page 230 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Note The macro recorder generates selectionbased code — that is, when you
work with a shape with the macro recorder turned on, it records a step for
selecting the shape, records a step for accessing the ShapeRange collection in
the selection, and then records the properties and methods you apply to the
shape. When you write code from scratch or edit recorded code, you can create
more efficient code by skipping the selection step and returning shapes directly
from the Shapes collection.

Drawing a Shape on a Document, Worksheet,
or Slide

Use one of the methods of the Shapes collection, listed in the following table,
to add a shape to a document, worksheet, or slide. For detailed syntax
information, see the Help topic for the specific method.

To add this kind of graphic Use this method

Callout AddCallout

Sticky-note-like comment
(PowerPoint only)

AddComment

Line or curve that connects two
other shapes (Microsoft Excel
and PowerPoint)

AddConnector

Bézier curve AddCurve

Native Microsoft Excel form
control (Microsoft Excel only)

AddFormControl

Rectangle with no line and no fill
and an attached text frame

AddLabel

Line AddLine

Sound or movie (PowerPoint
only)

AddMediaObject

ActiveX control (Word only; use
AddOLEObject in Microsoft
Excel and PowerPoint)

AddOLEControl

Embedded or linked OLE object AddOLEObject

Picture AddPicture

Placeholder for text or for a
graphic object (PowerPoint only)

AddPlaceholder

Open polyline or closed polygon
drawing

AddPolyline

AutoShape AddShape

Rectangle with no line and no fill
and an attached text frame

AddTextbox

Microsoft Office 97/Visual Basic Programmer's Guide Page 231 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

The following example adds a rectangle to myDocument.

myDocument.Shapes.AddShape msoShapeRectangle, 50, 50, 100, 200

When you add a shape, you usually specify the dimensions of the shape and the
position of the upperleft corner of the bounding box for the shape relative to the
upperleft corner of the page, worksheet, or slide. Distances in the drawing layer
are measured in points (72 points = 1 inch).

The methods that add shapes to the drawing layer return a reference to each
added shape. You can therefore add a shape and apply properties and methods
to it in a single step, as shown in the following example, which adds a shape to
myDocument and sets its name it the same statement.

myDocument.Shapes.AddShape(msoShapeIsoscelesTriangle, 10, 10, 100, 10

The following example adds a shape to myDocument and formats its fill.

With myDocument.Shapes.AddShape(msoShapeRectangle, 90, 90, 90, 50).Fi
 .ForeColor.RGB = RGB(128, 0, 0)
 .BackColor.RGB = RGB(170, 170, 170)
 .TwoColorGradient msoGradientHorizontal, 1
End With

Editing a Shape

You can use properties and methods of the Shape and ShapeRange objects to
move, resize, or delete a shape; change its appearance; or add text to it.

Finding the Properties and Methods You Need to
Perform a Task

Properties and methods that control attributes and behavior common to all
types of shapes apply directly to the Shape and ShapeRange objects. Related
properties and methods that apply to specific types of shapes are encapsulated
in secondary objects that you return from the Shape object.

Common Properties and Methods

Properties and methods that control and attributes and behavior common to
shapes of different types apply directly to the Shape and ShapeRange objects.
This group includes properties that control the size and position of the shape
(such as Left, Top, Height, and Width) and methods that control generic
editing behavior (such as Duplicate and ZOrder). The following example sets

WordArt AddTextEffect

Slide title (PowerPoint only) AddTitle

Freeform BuildFreeform and ConvertToShape

Microsoft Office 97/Visual Basic Programmer's Guide Page 232 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

the size of shape one on myDocument.

With myDocument.Shapes(1)
 .Height = 50
 .Width = 100
End With

Properties and Methods for Specific Types of Shapes

Related shape attributes that apply to a specific type of shape are grouped
under secondary objects, such as the FillFormat object, which contains the
properties that apply to shapes with fills, or the CalloutFormat object, which
contains all the properties that are unique to callouts. To set these kinds of
attributes for a shape, you must first return the object that contains them and
then set properties of that object. For example, you use the Fill property to
return the FillFormat object, and then you set the ForeColor property of the
FillFormat object to set the fill foreground color for the specified shape. The
following example sets the foreground color to red for the fill for shape one on
myDocument.

myDocument.Shapes(1).Fill.ForeColor.RGB = RGB(255, 0, 0)

The following table shows the objects accessible from the Shape object that
contain functionally related properties and methods. Note that some of the
properties that return these secondary objects have the same name as the
returned object (for example, the PictureFormat property returns the
PictureFormat object) whereas other properties have the name of the returned
object minus the word "Format" (for example, the Fill property returns the
FillFormat object).

Use this property of
the Shape object To return this object

Which contains
properties and methods
that apply to

Callout CalloutFormat Callouts

ConnectorFormat
(Microsoft Excel and
PowerPoint only)

ConnectorFormat Connectors

ControlFormat
(Microsoft Excel only)

ControlFormat Native form controls

Fill FillFormat Shapes that can contain
fills (all shapes except
lines)

Line LineFormat All shapes (the
LineFormat object can
represent a line or a
shape's border)

LinkFormat LinkFormat Linked OLE objects, linked
pictures (Word only), and
linked fields (Word only)

Microsoft Office 97/Visual Basic Programmer's Guide Page 233 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Trying to return certain secondary objects (such as the CalloutFormat,
ConnectorFormat, OLEFormat, PictureFormat, or TextEffectFormat
object) from an inappropriate type of shape can cause an error. For example, if
you apply the OLEFormat property to a shape that isn't an OLE object, you'll
get an error. (Trying to return certain other secondary objects — such as the
FillFormat, LineFormat, ShadowFormat, or ThreeDFormat object — from
an inappropriate type of shape doesn't cause an error.)

To avoid problems, check the Type property and, when applicable, the
AutoShapeType property of a shape before applying a property or method that
applies only to certain types of objects, and be sure to include error handling in
your code. The following example updates all linked OLE objects on myDocument.
Note that you cannot change the type of an existing object; for example, you
cannot change an object that's not a picture into a picture.

For Each sh In myDocument.Shapes
 If sh.Type = msoLinkedOLEObject Then
 sh.LinkFormat.Update
 End If
Next

For information about error handling, see Chapter 14, "Debugging and Error
Handling."

Working with the Shape's Fill

The FillFormat object represents a shape's fill. You use properties and methods
of the FillFormat object to set the type, color, and transparency of the fill.
Because there are a number of factors that determine a fill's appearance, many
individually valid property settings for the FillFormat object don't make any
sense in combination with other properties or without additional information
being supplied. For example, the value msoPatternDarkVertical for the
Pattern property doesn't make much sense in conjunction with the value
msoGradientDiagonalUp for the GradientStyle property, and the value
msoFillPicture for the Type property doesn't make sense if you haven't
specified a picture file to use.

So that you don't inadvertently assign incompatible values to individual
properties of the FillFormat object or neglect to supply a necessary piece of
information when you assign a property value, most of the properties are read-
only. You can set their values only by using methods that set multiple individual
properties to compatible values at the same time. For example, you could not

OLEFormat OLEFormat OLE objects

PictureFormat PictureFormat Pictures and OLE objects

Shadow ShadowFormat All shapes

TextEffect TextEffectFormat WordArt objects

ThreeD ThreeDFormat Shapes that can be
extruded

WrapFormat(Word
only)

WrapFormat Shapes that text will wrap
around

Microsoft Office 97/Visual Basic Programmer's Guide Page 234 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

write code that would leave you with the two incompatible settings mentioned
in the preceding paragraph, because using the Patterned method to set a
patterned fill automatically sets the GradientStyle property to
msoGradientMixed, and using the OneColorGradient, PresetGradient, or
TwoColorGradient method to set a gradient fill automatically sets the value of
the Pattern property to msoPatternMixed.

Use one of the following methods to set a shape's fill type: Background
(PowerPoint only), OneColorGradient, Patterned, PresetGradient,
PresetTextured, Solid, TwoColorGradient, UserPicture, or UserTextured.
You can also use any of the following read/write properties to control the fill's
appearance: BackColor, ForeColor, Transparency, or Visible.

The following example adds a rectangle to myDocument and then sets the
foreground color, background color, and gradient for the rectangle's fill.

With myDocument.Shapes.AddShape(msoShapeRectangle, 90, 90, 90, 50).Fi
 .ForeColor.RGB = RGB(128, 0, 0)
 .BackColor.RGB = RGB(170, 170, 170)
 .TwoColorGradient msoGradientHorizontal, 1
End With

Adding Shadows and 3D Effects

Use the Shadow property of the Shape object to return the ShadowFormat
object, and use the properties and methods of the ShadowFormat object to
edit a shape's shadow. The following example sets the shadow for shape three
on myDocument to semitransparent red. If the shape doesn't already have a
shadow, this example adds one to it.

With myDocument.Shapes(3).Shadow
 Visible = True
 .ForeColor.RGB = RGB(255, 0, 0)
 .Transparency = 0.5
End With

Use the ThreeD property of the Shape object to return the ThreeDFormat
object, and use the properties and methods of the ThreeDFormat object to edit
a shape's extrusion. The following example adds an oval to myDocument and
then specifies that the oval be extruded to a depth of 50 points and that the
extrusion be purple, orthographic, and lit from the left.

Set myShape = myDocument.Shapes.AddShape(msoShapeOval, 90, 90, 90, 40
With myShape.ThreeD
 .Visible = True
 .Depth = 50
 .ExtrusionColor.RGB = RGB(255, 100, 255) ' RGB value for purpl
 .Perspective = False
 .PresetLightingDirection = msoLightingLeft
End With

You cannot apply threedimensional formatting to certain kinds of shapes. Most
of the properties and methods of the ThreeDFormat object for such a shape
will fail.

Microsoft Office 97/Visual Basic Programmer's Guide Page 235 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Note If you don't see the shadow or extrusion you expect, make sure that the
Visible property of the ShadowFormat or ThreeDFormat object is set to True.

Adding Text to a Shape

The area within a shape that can contain text is called a text frame. The
TextFrame object of a given shape contains the text in the text frame as well
as the properties and methods that control the alignment and anchoring of the
text frame.

Note Only builtin, twodimensional AutoShapes have text frames; lines,
connectors, freeforms, pictures, OLE objects, and media objects don't. Before
applying the TextFrame property to a shape, check to see whether the shape
has a text frame. In PowerPoint, you can do this by checking the value of the
HasTextFrame property. In Microsoft Excel and Word, check the Type property
of the shape to see whether it's a type of shape that can contain text. You
should always include error handling in case the TextFrame property gets
applied to a shape that doesn't have a text frame.

In Word, use the TextRange property of the TextFrame object to return a
Range object that represents the range of text inside the specified text frame.
The following example adds text to the text frame for shape one in the active
document.

ActiveDocument.Shapes(1).TextFrame.TextRange.Text = "My Text"

In Microsoft Excel, use the Characters property of the a TextFrame object to
return a Characters object that represents the text inside the specified text
frame. The following example adds text to the text frame for shape one on the
active worksheet.

ActiveWorksheet.Shapes(1).TextFrame.Characters.Text = "My Text"

In PowerPoint, use the TextRange property of the TextFrame object to return
a TextRange object that represents the range of text inside the specified text
frame. The following example adds text to the text frame for shape one on slide
one in the active presentation.

ActivePresentation.Slides(1).Shapes(1).TextFrame.TextRange.Text = "My

Working with OLE Objects on a Document,
Worksheet, or Slide

You use the properties and methods of the OLEFormat object — such as the
Activate and DoVerb methods — to control the OLE object contained in a
shape. Use the OLEFormat property of the Shape object to return the
OLEFormat object. The following example performs the default verb for shape
three on myDocument if this shape contains an OLE object.

Microsoft Office 97/Visual Basic Programmer's Guide Page 236 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

With myDocument.Shapes(3)
 If .Type = msoEmbeddedOLEObject Or _
 .Type = msoLinkedOLEObject Then
 .OLEFormat.DoVerb
 End If
End With

Use the Object property of the OLEFormat object to return the OLE object
contained in the specified shape. (In Microsoft Excel, you must use the Object
property twice in a row, separated by the dot operator, to return the OLE
object.) The following example, run from Word or PowerPoint, adds text to cell
A1 on worksheet one in the Microsoft Excel workbook contained in shape three
on myDocument.

With myDocument.Shapes(3)
 .OLEFormat.Activate
 .OLEFormat.Object.Worksheets(1).Range("A1").Value = "New text"
End With

Use the Application property of the OLE object returned by the Object
property to return the toplevel object of the application that created the OLE
object. The following example, run from Microsoft Excel, displays the name of
the application in which each embedded OLE object on the active sheet was
created. Notice that you must use the Object property twice in a row to return
an OLE object in Microsoft Excel.

For Each s In ActiveSheet.Shapes
 If s.Type = msoEmbeddedOLEObject Then
 s.OLEFormat.Activate
 MsgBox s.OLEFormat.Object.Object.Application.Name
 End If
Next

For information about using ActiveX controls (a special type of interactive OLE
object), see Chapter 12, "ActiveX Controls and Dialog Boxes."

Working with More Than One Shape

There are several ways to work with multiple shapes. If you want to set
properties for multiple shapes individually, you can loop through a Shapes or
ShapeRange collection and apply properties and methods to the individual
Shape objects in the collection. If you want to apply a property or method to
multiple shapes at the same time, you can construct a ShapeRange collection
that contains the shapes and then apply the property or method to the
ShapeRange collection. If you want to form a single shape out of multiple
shapes that can then be formatted, sized, and positioned as a single entity, you
can group the shapes. If you want to position shapes relative to each other, you
can align and distribute them horizontally or vertically.

Constructing a Shape Range That Contains Only
Certain Types of Shapes

Microsoft Office 97/Visual Basic Programmer's Guide Page 237 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

If you want to construct a shape range that contains only the shapes in the
specified collection that possess a certain attribute or attributes, use a
conditional statement to test for the attributes you want, and add the names or
index numbers of the shapes that satisfy your conditions to a dynamic array.
You can then construct a shape range by using this array as an argument. The
following example constructs a shape range that contains all the AutoShapes on
myDocument and then groups them.

With myDocument.Shapes
 numShapes = .Count
 If numShapes > 1 Then
 numAutoShapes = 0
 ReDim autoShpArray(1 To numShapes)
 For i = 1 To numShapes
 If .Item(i).Type = msoAutoShape Then
 numAutoShapes = numAutoShapes + 1
 autoShpArray(numAutoShapes) = .Item(i).Name
 End If
 Next
 If numAutoShapes > 1 Then
 ReDim Preserve autoShpArray(1 To numAutoShapes)
 Set asRange = .Range(autoShpArray)
 asRange.Group
 End If
 End If
End With

Tip If you want to include shapes that have one of several possible values for
a property in an array — for example, if you want to include all shapes that are
of type msoEmbeddedOLEObject, msoLinkedOLEObject,
msoLinkedPicture, or msoPicture — use a Select Case structure instead of
an If…End If structure to determine which shapes to include in the shape
range.

Applying a Property or Method to Several Shapes at
the Same Time

In the user interface, there are some operations you can perform with several
shapes selected; for example, you can select several shapes and set all their
individual fills at once. There are other operations you can only perform with a
single shape selected; for example, you can only edit the text in a shape if a
single shape is selected.

In Visual Basic, there are two ways to apply properties and methods to a set of
shapes. These two ways allow you to perform any operation that you can
perform on a single shape on a range of shapes, whether or not you can
perform the same operation in the user interface.

� If the operation works on a multiple selected shapes in the user interface,
you can perform the same operation in Visual Basic by constructing a
ShapeRange collection that contains the shapes you want to work with,
and applying the appropriate properties and methods directly to the
ShapeRange collection.

Microsoft Office 97/Visual Basic Programmer's Guide Page 238 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

� If the operation doesn't work on multiple selected shapes in the user
interface, you can still perform the operation in Visual Basic by looping
through the Shapes collection or through a ShapeRange collection that
contains the shapes you want to work with, and applying the appropriate
properties and methods to the individual Shape objects in the collection.

Important Many properties and methods that apply to the Shape object and
the ShapeRange collection fail if they're applied to certain kinds of shapes. For
example, the TextFrame property fails if it's applied to a shape that cannot
contain text. If you're not positive that each of the shapes in a ShapeRange
collection can have a certain property or method applied to it, don't apply the
property or method to the collection. If you want to apply one of these
properties or methods to a collection of shapes, you must loop through the
collection and test each individual shape to make sure that it's an appropriate
type of shape before applying one of these properties or methods to it.

Applying a Property or Method to a ShapeRange Collection

If you can perform an operation on multiple selected shapes in the user
interface at the same time, you can do the programmatic equivalent by
constructing a ShapeRange collection and then applying the appropriate
properties or methods to it. The following example constructs a shape range
that contains the AutoShapes named "Big Star" and "Little Star" on myDocument
and applies a gradient fill to them.

Set myRange = myDocument.Shapes.Range(Array("Big Star", "Little Star"
myRange.Fill.PresetGradient msoGradientHorizontal, 1, msoGradientBras

The following are general guidelines for how properties and methods behave
when they're applied to a ShapeRange collection:

� Applying a method to a the collection is equivalent to applying the method
to each individual Shape object in that collection.

� Setting the value of a property of the collection is equivalent to setting the
value of the property of each individual shape in that collection.

� A property of the collection that returns a constant returns the value of
the property for an individual shape in the collection if all shapes in the
collection have the same value for that property. If not all shapes in the
collection have the same value for the property, it returns the "mixed"
constant.

� A property of the collection that returns a simple data type (such as Long,
Single, or String) returns the value of the property for an individual
shape if all shapes in the collection have the same value for that property.

� The value of some properties can be returned or set only if there's exactly
one shape in the collection. If there's more than one shape in the
collection, a runtime error occurs. This is generally the case for returning
or setting properties when the equivalent action in the user interface is
possible only with a single shape (actions such as editing text in a shape

Microsoft Office 97/Visual Basic Programmer's Guide Page 239 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

or editing the points of a freeform).

The preceding guidelines also apply when you are setting properties of shapes
that are grouped under secondary objects of the ShapeRange collection, such
as the FillFormat object. If the secondary object represents operations that can
be performed on multiple selected objects in the user interface, you will be able
to return the object from a ShapeRange collection and set its properties. For
example, you can use the Fill property to return the FillFormat object that
represents the fills of all the shapes in the ShapeRange collection. Setting the
properties of this FillFormat object will set the same properties for all the
individual shapes in the ShapeRange collection.

Looping Through a Shapes or ShapeRange Collection

Even if you cannot perform an operation on several shapes in the user interface
at the same time by selecting them and then applying a command, you can
perform the equivalent action programmatically by looping through the Shapes
or ShapeRange collection that contains the shapes you want to work with and
applying the appropriate properties and methods to the individual Shape
objects in the collection. The following example loops through all the shapes on
myDocument and adds text to each shape that's an AutoShape.

For Each sh In myDocument.Shapes
 If sh.Type = msoAutoShape Then
 sh.TextFrame.TextRange.InsertAfter " (version 1)"
 End If
Next

Grouping, Aligning, Distributing, and Layering Shapes

Use the Align and Distribute methods of the ShapeRange object to align or
evenly distribute shapes horizontally or vertically. Use the ZOrder method of
the Shape or ShapeRange object to change the layering order of shapes on a
document relative to one another. For examples of the syntax you use to
perform these operations, see the appropriate Help topics in Microsoft Excel,
Word, or PowerPoint.

When you want to work with multiple shapes as a single entity, you can group a
range of shapes together into single shape by using the Group method of the
ShapeRange collection. The following example adds two shapes to
myDocument, groups the two new shapes together, sets the fill for the group,
rotates the group, and then sends it to the back of the drawing layer.

With myDocument.Shapes
 .AddShape(msoShapeCan, 50, 10, 100, 200).Name = "shpOne"
 .AddShape(msoShapeCube, 150, 250, 100, 200).Name = "shpTwo"
 With .Range(Array("shpOne", "shpTwo")).Group
 .Fill.PresetTextured msoTextureBlueTissuePaper
 .Rotation = 45
 .ZOrder msoSendToBack
 End With
End With

Use the Ungroup method of the Shape object to ungroup a group of shapes,

Microsoft Office 97/Visual Basic Programmer's Guide Page 240 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

and use the Regroup method of the ShapeRange collection to restore a group
of shapes that you've ungrouped.

If you want to work with the individual shapes in a group without ungrouping
them, use the GroupItems property of the Shape object that represents the
group of shapes to return the GroupShapes object, and use the Item method
of the GroupShapes object to return an individual shape within the group of
shapes. The following example adds three triangles to myDocument, groups the
triangles, sets a color for the entire group, and then changes the color for the
second triangle only.

With myDocument.Shapes
 .AddShape(msoShapeIsoscelesTriangle, 10, 10, 100, 100).Name = "sh
 .AddShape(msoShapeIsoscelesTriangle, 150, 10, 100, 100).Name = "s
 .AddShape(msoShapeIsoscelesTriangle, 300, 10, 100, 100).Name = "s
 With .Range(Array("shpOne", "shpTwo", "shpThree")).Group
 .Fill.PresetTextured msoTextureBlueTissuePaper
 .GroupItems(2).Fill.PresetTextured msoTextureGreenMarble
 End With
End With

Contents
� Working with DAO Objects
� Using DAO with Microsoft Jet
� Accessing ODBC Data
� Using DAO with ODBCDirect
� Using ODBCDirect

Microsoft Data Access Objects (DAO) provide a way to control a database from
any application that supports Visual Basic for Applications, including Microsoft
Access, Microsoft Excel, and Microsoft Visual Basic. Some DAO objects represent
the structure of your database, while others represent the data itself. By using
DAO, you can create and manage local or remote databases in a variety of
formats, and work with their data. This chapter explains how to program with
DAO objects from within Microsoft Office applications.

Working with DAO Objects

Microsoft DAO objects provide a way to interact with a database from any
application that includes Visual Basic for Applications. DAO objects represent
different parts of a database. You can use DAO objects to work with the parts of
your database from code. With DAO objects, you can:

� Create a database or change the design of its tables, queries, indexes,
and relationships.

C H A P T E R 11 Microsoft Office 97/Visual Basic Programmer's Guide

Data Access Objects

Microsoft Office 97/Visual Basic Programmer's Guide Page 241 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

� Retrieve, add, delete, or change the data in the database.

� Implement security to protect your data.

� Work with data in different file formats and link tables in other databases
to your database.

� Connect to databases on remote servers and build client/server
applications.

Note In order to use DAO objects, you must select the Data Access check box
when you install Microsoft Office. If you haven't installed Data Access with
Microsoft Office, run Setup again.

DAO objects are organized in a hierarchical relationship. Objects contain
collections, and collections contain other objects. The DBEngine object is the
toplevel object that contains all the other objects and collections in the DAO
object hierarchy. The following table summarizes the DAO objects.

Object Description

Connection Network connection to an Open Database
Connectivity (ODBC) database

Container Security information for various types of
objects in the database

Database Open database

DBEngine The top-level object in the DAO object
hierarchy

Document Security information for individual objects in
the database

Error Data access error information

Field Field in a TableDef, QueryDef, Recordset,
Index, or Relation object

Group Group account in the current workgroup

Index Table index

Parameter Query parameter

Property Property of an object

QueryDef Saved query definition in a database

Recordset Set of records defined by a table or query

Relation Relationship between two table or query fields

TableDef Saved table definition in a database

User User account in the current workgroup

Workspace Active DAO session

Microsoft Office 97/Visual Basic Programmer's Guide Page 242 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Designing Databases in Microsoft Access

You can design databases in Visual Basic with DAO. However, if you're
programming in an application other than Microsoft Access, you may find it
faster to design your database in the Microsoft Access user interface, then write
DAO code for any additional functionality that you want. With Microsoft Access,
you can quickly and easily design tables, queries, indexes, and relationships;
link tables from external data sources; and implement security. You can then
open the database with DAO from another application that hosts Visual Basic.

There are a few things to keep in mind when you create a database in Microsoft
Access:

� When you open an .mdb file created in Microsoft Access from another
application, you can't work with Microsoft Access forms, reports, macros,
or modules. You should design forms and reports and write all Visual Basic
code from the application in which you're working.

� If you write code to work with your database within Microsoft Access, that
code will not necessarily run if you copy it to a module in another
application, such as Microsoft Excel. You may need to modify the code and
remove any Microsoft Accessspecific objects, methods, properties, or
functions.

� In Microsoft Access, you use the CurrentDb function to return a reference
to the database that's currently open in the Microsoft Access window. You
can then use DAO to work with the current database. If you use this code
in an application other than Microsoft Access, you'll need to change code
that calls the CurrentDb function so that it calls the OpenDatabase
method of a Workspace object instead.

� Microsoft Access creates additional properties for DAO objects. When you
create a database with DAO in Visual Basic, then open it in Microsoft
Access, you may notice that some new properties are defined for some of
your DAO objects. For example, a Field object in the Fields collection of a
TableDef object may have a Description property, which is created by
Microsoft Access. You can see these properties when you enumerate
through the Properties collection for a DAO object.

Setting a Reference to the Microsoft DAO Object
Library

To work with DAO objects from within any application, you must have a
reference to the Microsoft DAO 3.5 object library. Microsoft Access sets this
reference automatically. You may need to set it yourself if you're working within
another Microsoft Office application.

To set a reference to the Microsoft DAO 3.5 object library from a Microsoft Office
application other than Microsoft Access, open the Visual Basic Editor, click
References on the Tools menu, and then select the Microsoft DAO 3.5
Object Library check box. Once you've set a reference to the DAO object
library, you can view the DAO objects in the Object Browser by clicking DAO in

Microsoft Office 97/Visual Basic Programmer's Guide Page 243 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

the Project/Library box.

Some objects, properties, and methods that were supported in earlier versions
of Microsoft DAO have been replaced by new objects, properties, and methods
with more complete functionality, and are no longer supported by DAO version
3.5. If you're working with an application created in an earlier version of
Microsoft DAO, you can set a reference to the Microsoft DAO 2.5/3.5
compatibility library rather than to the Microsoft DAO 3.5 object library. The
Microsoft DAO 2.5/3.5 compatibility library contains all of the objects, methods,
and properties that are in the Microsoft DAO 3.5 object library, plus some that
existed in DAO version 2.5, but that are no longer supported in DAO version
3.5.

Code that uses objects, methods, and properties that were available in DAO
version 2.5 but are no longer available in DAO version 3.5 will continue to run
when you reference the Microsoft DAO 2.5/3.5 compatibility library. However,
it's a good idea to update your code to take advantage of the features of DAO
version 3.5, and to write new code that uses the objects, properties, and
methods provided by the Microsoft DAO 3.5 object library. The Microsoft DAO
2.5/3.5 compatibility library is larger, so it requires more resources. Also, future
versions may not support some objects, methods, and properties which are now
available in the compatibility library.

To determine whether you need to use the compatibility library, make sure
there is a reference set to the Microsoft DAO 3.5 object library and compile all
modules that contain DAO code. If your code compiles without any problems,
you can use the Microsoft DAO 3.5 object library. If your DAO code generates
compile errors, then you should set a reference to the Microsoft DAO 2.5/3.5
compatibility library and try to compile your code again.

For more information about which DAO features are supported in the DAO
2.5/3.5 compatibility library but not in the Microsoft DAO 3.5 object library,
search DAO Help for "Obsolete features in DAO," or search Microsoft Access Help
for "DAO, compatibility with previous versions."

Referring to DAO Objects in Visual Basic

You refer to DAO objects in code in the same way that you refer to other
objects. Because the DBEngine object doesn't have a collection, you can refer
to it directly. You must refer to other objects within their collections and
according to their positions in the object hierarchy.

You can refer to any type of object within a collection in one of two ways: by its
Name property setting or by its index number, which indicates its position
within the collection. DAO objects are indexed beginning with zero. This means
that the first object in a collection has an index number of 0, the second object
has an index number of 1, and so on. The following examples, which refer to a
Database object within the Databases collection, illustrate both ways to refer
to an object within a collection.

Databases("database name")
Databases(0)

To refer to a Database object in code, you also need to refer to it according to

Microsoft Office 97/Visual Basic Programmer's Guide Page 244 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

its position within the object hierarchy. The following code fragment shows how
you can actually refer to a Database object in code. The Database object is
the first member of the Databases collection of the default Workspace object,
which is a member of the Workspaces collection of the DBEngine object. Note
that if you're working in an application other than Microsoft Access, you must
open a database with the OpenDatabase method before you run this code.

Dim dbs As Database
Set dbs = DBEngine.Workspaces(0).Databases(0)

When you work with DAO objects from any application other than Microsoft
Access, you may want to qualify the object with the Visual Basic name of the
DAO object library, which is DAO. By qualifying objects when you use them,
you ensure that Visual Basic always creates the correct object. The following
example declares a DAO object variable of type Database:

' Qualify object variable type.
Dim dbs As DAO.Database

Adding New DAO Objects to a Collection

As stated earlier in this chapter, some DAO objects represent the structure of
the database, and others provide a means for you to work with the data stored
in the database. Objects that represent the structure of the database are saved
with the database. Objects that you use to work with the data in the database
generally are not saved, but are created each time you need them.

When you create a new DAO object to be saved with the database, you must
append it to the appropriate collection of saved objects by using that collection's
Append method. The following example creates a new TableDef object named
ArchivedInvoices with a new Field object named OrderID. It appends the new
Field object to the Fields collection of the new TableDef object, and it appends
the TableDef object to the TableDefs collection of the Database object that
represents the open database.

Note The following example, and other examples in this chapter, use the
Northwind sample database to illustrate concepts of DAO programming. In order
to try these examples, you need to have installed the Northwind sample
database which is included with Microsoft Access. By default, it is installed in
the C:\Program Files\Microsoft Office\Office\Samples folder. If you haven't
installed the Northwind sample database, you can install it by running Setup
again.

Function AddTable() As Boolean
' Declare object variables and constant.
Dim dbs As Database, tdf As TableDef, fld As Field
Const conPath As String = _

"C:\Program Files\Microsoft Office\Office\Samples\Nor

On Error GoTo Err_AddTable
' Assign current database to database variable.
Set dbs = DAO.DBEngine.Workspaces(0).OpenDatabase(conPath)
' Create new table and field, and assign to table and field v
Set tdf = dbs.CreateTableDef("ArchivedInvoices")
Set fld = tdf.CreateField("OrderID", dbLong)

Microsoft Office 97/Visual Basic Programmer's Guide Page 245 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

' Add field to table's Fields collection.
tdf.Fields.Append fld
' Add table to database's TableDefs collection.
dbs.TableDefs.Append tdf
dbs.Close
AddTable = True

Exit_AddTable:
Exit Function

Err_AddTable:
MsgBox

"Error " & Err & ": " & Err.Description
AddTable = False
Resume Exit_AddTable

End Function

Note The preceding example uses the OpenDatabase method to open the
Northwind sample database, return a reference to it, and assign this reference
to an object variable of type Database. If you're programming within Microsoft
Access, use the CurrentDb function to return a reference to the database that's
currently open in Microsoft Access.

Working with External Data

You can use DAO to work with databases in different formats. There are three
different categories of database formats that are accessible through DAO. The
first type of format is the Microsoft Jet format. You can use DAO to work with all
databases created with the Microsoft Jet database engine, including those
created in Microsoft Access, Microsoft Visual Basic, Microsoft Visual C++®, and
Microsoft Excel.

The second type of database format is the installable ISAM format. An
installable ISAM is a driver that provides access to external database formats
through DAO and the Microsoft Jet database engine. You must use your
application's Setup program to install any installable ISAMs that you want to
use. Installable ISAMs are loaded by Microsoft Jet when you refer to them in
code. The individual database formats for which installable ISAMs are available
include:

� Microsoft FoxPro®, versions 2.0, 2.5, 2.6, 3.0 (readonly), and DBC

� dBASE III, dBASE IV, and dBASE version 5.0

� Paradox, versions 3.x, 4.x, and 5.x

� Microsoft Excel version 3.0, 4.0, 5.0, 7.0, and 8.0 worksheets

� Microsoft Exchange/Outlook

� Lotus 123 WK1, WK3, and WKS spreadsheets

� Delimited and fixedwidth text files in tabular format

Microsoft Office 97/Visual Basic Programmer's Guide Page 246 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

� Tabular data in Hypertext Markup Language (HTML) files

The third type of database format that is accessible through DAO is the Open
Database Connectivity (ODBC) data source. ODBC data sources, such as
Microsoft SQL Server™ versions 4.2 and later, require an ODBC driver. Often an
ODBC data source resides on a network server. ODBC is useful for developing
client/server applications. The next section introduces two ways to work with
ODBC data sources through DAO.

Using DAO to Work with ODBC Data Sources

There are two different ways to use DAO to work with ODBC data sources:
through Microsoft Jet, or by means of a new technology called ODBCDirect. If
you're working with a database created with the Microsoft Jet database engine
or in an external format supported by an installable ISAM, all DAO operations
are processed through Microsoft Jet. If you're working with an ODBC data
source, you can either process DAO operations through Microsoft Jet, or you can
use ODBCDirect to circumvent the Microsoft Jet engine and work directly with
the data in the ODBC data source.

Whether you use DAO with Microsoft Jet or with ODBCDirect to work with an
ODBC data source depends on what kind of operations you need to perform on
the data source. You can use DAO with Microsoft Jet when you need to take
advantage of Microsoft Jet's unique features for ODBC operations, such as the
ability to create or modify objects or to join data from different database
formats.

You can use ODBCDirect when you need to run queries or stored procedures
against a backend server, such as Microsoft SQL Server, or when your client
application needs only the specific capabilities of ODBC, such as batch updates
or asynchronous queries. ODBCDirect can also make certain client/server
operations significantly faster.

Because not all DAO features are available with ODBCDirect, Microsoft DAO still
supports ODBC through the Microsoft Jet database engine. You can use ODBC
through Microsoft Jet, ODBCDirect, or both, with a single ODBC data source.

Which of these two methods you can use to access an ODBC data source is
determined by what type of workspace you're working in. A workspace,
represented by a Workspace object, is an active session for a particular user
account. A session marks a sequence of operations performed by the database
engine. A session begins when a particular user logs on and ends when that
user logs off. The operations that a user can perform during a session are
determined by the permissions granted to that user. If you don't specifically
create a workspace, then DAO creates a default workspace for you.

With Microsoft DAO version 3.5, you can create either of two types of
workspaces for ODBC operations. If you create a Microsoft Jet workspace, you
can use DAO with Microsoft Jet to access ODBC data. If you create an
ODBCDirect workspace, you can use DAO to work directly with the data in the
ODBC data source, without going through the Microsoft Jet database engine.

Each type of workspace has its own object model. The next section of this

Microsoft Office 97/Visual Basic Programmer's Guide Page 247 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

chapter discusses the object model for the Microsoft Jet workspace. Later
sections discuss the advantages of using each type of workspace and describe
the object model for ODBCDirect workspaces.

Using DAO with Microsoft Jet

Microsoft Jet workspaces include objects that you can use to define the structure
of your database, such as the TableDef, QueryDef, Field, Index, Parameter,
and Relation objects. Microsoft Jet workspaces also include objects that you
can use to manipulate your data, such as the Recordset object. You can use
other objects, such as the User, Group, Container, and Document objects, to
secure your application. The following diagram shows the object model for
Microsoft Jet workspaces.

The DBEngine Object

As previously mentioned, the DBEngine object is the toplevel object in the DAO
object hierarchy. It contains all other DAO objects and collections. The
DBEngine object is the default object in the object model, so in many cases
you don't need to refer to it explicitly.

Microsoft Office 97/Visual Basic Programmer's Guide Page 248 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

The DBEngine object contains two collections: the Workspaces collection and
the Errors collection. The Workspaces collection is the default collection of the
DBEngine object, so you don't need to refer to it explicitly. You can return a
reference to the first Workspace object in the Workspaces collection of the
DBEngine object in any of the following ways:

Set wrk = DBEngine.Workspaces(0)
Set wrk = DBEngine(0)
Set wrk = Workspaces(0)

If you don't specifically create a new Workspace object, DAO automatically
creates a default workspace when you need it. The settings of the DefaultUser
and DefaultPassword properties of the DBEngine object specify the default
user name and password to be used with the default Workspace object. By
default, the DefaultUser property is set to Admin and the DefaultPassword
property is set to a zerolength string ("").

The setting for the DefaultType property of the DBEngine object determines
whether the default workspace is a Microsoft Jet workspace or an ODBCDirect
workspace. By default, the DefaultType property is set to dbUseJet, and the
default workspace is a Microsoft Jet workspace. When you're creating a
workspace, you can override the setting for this property by specifying either
dbUseJet or dbUseODBC as the type argument of the CreateWorkspace
method. For example, if the DefaultType property is set to dbUseJet and you
want to create an ODBCDirect workspace, specify the dbUseODBC constant as
the type argument of the CreateWorkspace method. Conversely, if the
DefaultType property is set to dbUseODBC and you want to create a Microsoft
Jet workspace, specify the dbUseJet constant as the type argument of the
CreateWorkspace method.

You can use some of the methods of the DBEngine object to maintain your
database. For example, the CompactDatabase method copies your database
and compacts it. The RepairDatabase method attempts to repair a database
that's been damaged.

For more information about the DBEngine object, search DAO Help for
"DBEngine object."

The Workspace Object and the Workspaces
Collection

The DAO Workspace object defines a session for a user, based on the user's
permissions. You use the Workspace object to manage the current session.
The Workspace object contains open databases and provides mechanisms for
simultaneous transactions and for securing your application. The Workspaces
collection contains all active Workspace objects of the DBEngine object that
have been appended to the Workspaces collection.

When you begin working with DAO objects in Visual Basic, DAO automatically
creates a default workspace. To refer to the default workspace, you can refer to
the index number of the first Workspace object in the Workspaces collection,
as shown in the following example:

Microsoft Office 97/Visual Basic Programmer's Guide Page 249 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Dim wrk As Workspace
Set wrk = Workspaces(0)

DAO workspaces can be shared or hidden. A workspace is hidden until the user
marks it as shared by appending the Workspace object to the Workspaces
collection. After a workspace has been appended, you can access it throughout
your code simply by referring to it within the Workspaces collection. If you
need a Workspace object only within a particular procedure, you can create
the Workspace object but not append it to the Workspaces collection.

As noted earlier in this chapter, there are two types of Workspace objects:
Microsoft Jet workspaces and ODBCDirect workspaces. In a Microsoft Jet
workspace, you can use DAO with the Microsoft Jet database engine to access
data in Microsoft Jet databases, installable ISAM data sources, and ODBC data
sources. In an ODBCDirect workspace, you can use DAO to access data in ODBC
data sources, without going through the Microsoft Jet database engine. You can
work with both Microsoft Jet and ODBCDirect workspaces from within a single
application.

For more information about ODBCDirect workspaces, see "Using DAO with
ODBCDirect" later in this chapter.

Creating a New Microsoft Jet Workspace

To create a new Microsoft Jet workspace, use the CreateWorkspace method of
the DBEngine object. The following code creates a Microsoft Jet workspace. The
constant specified for the type argument, dbUseJet, specifies that the
workspace will be a Microsoft Jet workspace. If the DefaultType property of the
DBEngine object is set to dbUseJet, then you don't need to specify a value for
the type argument; DAO automatically creates a Microsoft Jet workspace.

Dim wrk As Workspace
Set wrk = CreateWorkspace("JetWorkspace", "Admin", "", dbUseJet)

Newly created Workspace objects — those created with the
CreateWorkspace method — are not automatically appended to the
Workspaces collection. You can use the Append method of the Workspaces
collection to append a new Workspace object if you want it to be part of the
collection. However, you can use the Workspace object even if it's not part of
the collection. Append the new Workspace object to the Workspaces
collection if you want to use the workspace from procedures other than the one
in which you created it.

For more information about creating a workspace, search DAO Help for
"CreateWorkspace method."

The Error Object and the Errors Collection

The Error object contains information about an error that occurred during a
DAO operation. More than one error can occur during a single DAO operation;
each individual error is represented by a separate Error object. The Errors
collection contains all of the Error objects that correspond to a single DAO

Microsoft Office 97/Visual Basic Programmer's Guide Page 250 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

operation. When a subsequent DAO operation generates an error, the Errors
collection is cleared, and one or more new Error objects are placed in the
Errors collection. DAO operations that don't generate any errors have no effect
on the Errors collection.

The first Error object in the Errors collection represents the lowest level error,
the one that occurred closest to the ODBC data source. The second represents
the next higher level error, and so forth. For example, if an ODBC error occurs
while trying to open a Recordset object, the first Error object, Errors(0),
contains the lowest level ODBC error; other Error objects contain the ODBC
errors returned by the various layers of ODBC, and the last Error object
contains the error returned by DAO. In this case, the ODBC driver manager, and
possibly the driver itself, return separate Error objects. The index number of
the last Error object in the collection, the DAO error, is one less than the value
returned by the Count property of the Errors collection. The Visual Basic Err
object contains the same error as the last Error object in the DAO Errors
collection.

The following example tries to insert values into a table that doesn't exist,
causing two DAO errors.

Note The following example, and other examples in this chapter, use the
Microsoft SQL Server Pubs sample database to illustrate concepts of
client/server programming. This database is included with Microsoft SQL Server.
If you don't have Microsoft SQL Server, you can adapt the example to your work
with your data source, or simply study it to understand the concepts. Before you
can work with any ODBC data source, you must register it. For information
about registering an ODBC data source, see "Registering an ODBC Data Source"
later in this chapter.

Private Sub CauseODBCError()
Dim dbs As Database, errObj As Error

On Error GoTo Err_CauseODBCError
Set dbs = OpenDatabase("", 0, 0, "ODBC;UID=sa;PWD=;DATABASE=P
dbs.Execute "INSERT INTO SomeTable VALUES (1,2,3)", dbSQLPass
Exit Sub

Err_CauseODBCError:
For Each errObj In Errors

Debug.Print errObj.Number, errObj.Description
Next
Resume Next

End Sub

The Database Object and the Databases Collection

The Database object represents an open database. It can be a Microsoft Jet
database or an external data source. The Databases collection contains all
currently open databases. The following table shows the relationship between
the Database object and the Databases collection and other objects and
collections in a Microsoft Jet workspace.

Microsoft Office 97/Visual Basic Programmer's Guide Page 251 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Opening a Database Object

To open a database and return a reference to the Database object that
represents it in any application other than Microsoft Access, use the
OpenDatabase method of the DBEngine object or of a Workspace object.
When you use the OpenDatabase method of the DBEngine object, Microsoft
DAO opens the database in the default workspace, as shown in the following
example.

Function RetrieveRecordset(strDbName As String, strSource As String)
Dim dbs As Database
Dim rst As Recordset

On Error GoTo Err_RetrieveRecordset
Set dbs = OpenDatabase(strDbName)
Set rst = dbs.OpenRecordset(strSource, dbOpenDynaset)
' Perform some operation with recordset.

.

.

.
RetrieveRecordset = True

Exit_RetrieveRecordset:
rst.Close
dbs.Close
Exit Function

Err_RetrieveRecordset:
MsgBox "Error " & Err & ": " & Err.Description
RetrieveRecordset = False
Resume Exit_RetrieveRecordset

End Function

If you're working within Microsoft Access, use the Microsoft Access CurrentDb
function to return a reference to the database that's currently open. Use the
OpenDatabase method to open databases other than the one that's currently
open, or to open databases in an ODBCDirect workspace. The following example
uses the CurrentDb function to return a reference to the database that is
currently open in Microsoft Access.

Object or collection Is contained by Contains

Database object Databases collection Containers collection

QueryDefs collection

Properties collection

Recordsets collection

Relations collection

TableDefs collection

Databases collection Workspace object Database objects

Microsoft Office 97/Visual Basic Programmer's Guide Page 252 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Dim dbs As Database
Set dbs = CurrentDb
Debug.Print dbs.Name

Creating Database Replicas with DAO

If you need to maintain two or more copies of a database, you can replicate the
database. When you replicate a database, you designate the database to be the
Design Master and create one or more copies of it that are identical in structure
and data; the copies are called replicas. You can create multiple replicas of a
database and maintain them on the same computer or over a network. You can
add, change, or delete objects only in the Design Master. You can change data
in the Design Master or in any of the replicas. When a user changes data within
one replica, the users of other replicas can synchronize their replica, so that the
same data is maintained in all replicas.

You can use DAO to make a database replicable, create replicas, synchronize
replicas, and manage a set of replicas. You can also use DAO to create partial
replicas. Partial replicas are replicas that contain only a subset of records in a
full replica. By using partial replicas, you can synchronize a replica with only the
data that you need, rather than with an entire database. For more information
about partial replicas, search Microsoft Access Help for "partial replicas."

To replicate a database with DAO, you must first make the database replicable
by setting either the Replicable or the ReplicableBool property of the
Database object. These properties don't exist on the Database object until you
create them and append them to the Properties collection. After you've made
the database replicable, you can create one or more replicas of it. The following
example backs up a database, makes it replicable by setting the
ReplicableBool property to True, and creates a replica by using the DAO
MakeReplica method.

Function ReplicateDatabase(strDBName As String) As Boolean
Dim dbs As Database, prp As Property
Dim strBackup As String, strReplica As String
Const conPropNotFound As Integer = 3270

On Error GoTo Err_ReplicateDatabase
If InStr(strDBName, ".mdb") > 0 Then

strBackup = Left(strDBName, Len(strDBName) - 4)
Else

strBackup = strDBName
End If

strReplica = strBackup & "Replica" & ".mdb"
If MsgBox("Make backup copy of file?", vbOKCancel) = vbOK

Then
strBackup = strBackup & ".bak"
FileCopy strDBName, strBackup
MsgBox "Copied file to " & strBackup

End If

Set dbs = OpenDatabase(strDBName, True)
dbs.Properties("ReplicableBool") = True
dbs.MakeReplica strReplica, "Replica of " & strDBName
MsgBox "Created replica '" & strReplica & "'."
dbs.Close

Microsoft Office 97/Visual Basic Programmer's Guide Page 253 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

ReplicateDatabase = True

Exit_ReplicateDatabase:
Exit Function

Err_ReplicateDatabase:
If Err = conPropNotFound Then

Set prp = dbs.CreateProperty("ReplicableBool", dbBool
dbs.Properties.Append prp
Resume

Next
Else

MsgBox "Error " & Err & ": " & Err.Description
End If
ReplicateDatabase = False
Resume Exit_ReplicateDatabase

End Function

Note The Replicable and ReplicableBool properties are functionally
identical. The only difference between them is that the Replicable property
setting is a string, and the ReplicableBool property setting is a Boolean value.

For more information about database replication and the DAO properties and
methods that you can use for replication, search DAO Help for "replication."

The TableDef Object and the TableDefs Collection

A TableDef object represents the stored definition of a base table or a linked
table in a Microsoft Jet workspace. The TableDefs collection contains all stored
TableDef objects in a database. The following table shows the relationship
between the TableDef object and the TableDefs collection and other objects
and collections in a Microsoft Jet workspace.

Creating a Table with Code

To create a table with DAO code, use the CreateTableDef method of a
Database object. After you've created a new TableDef object, but before you
append it to the database, you must define one or more fields for the table. The
following example creates a table that contains some of the error codes and
strings used or reserved by Visual Basic in the Northwind sample database.

Function CreateErrorsTable() As Boolean
Dim dbs As Database, tdf As TableDef, fld As Field, idx As In
Dim rst As Recordset, intCode As Integer, strErr As String

Const conAppObjErr = "Application-defined or object-defined e

Object or collection Is contained by Contains

TableDef object TableDefs collection Fields collection

Indexes collection

Properties collection

TableDefs collection Database object TableDef objects

Microsoft Office 97/Visual Basic Programmer's Guide Page 254 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

' Create Errors table with ErrorCode and ErrorString fields.
Set dbs = CurrentDb

On Error Resume Next
' Delete any existing Errors table.
dbs.TableDefs.Delete "Errors"

On Error GoTo Error_CreateErrorsTable
' Create table.
Set tdf = dbs.CreateTableDef("Errors")
' Create fields.
Set fld = tdf.CreateField("ErrorCode", dbInteger)
tdf.Fields.Append fld
Set fld = tdf.CreateField("ErrorString", dbMemo)
tdf.Fields.Append fld
dbs.TableDefs.Append tdf

' Create index.
Set idx = tdf.CreateIndex("ErrorCodeIndex")
Set fld = idx.CreateField("ErrorCode")
With idx

.Primary = True

.Unique = True

.Required = True
End With
idx.Fields.Append fld
tdf.Indexes.Append idx

' Open recordset on Errors table.
Set rst = dbs.OpenRecordset("Errors")
' Set recordset's index.
rst.Index = "ErrorCodeIndex"

' Show hourglass pointer.
DoCmd.Hourglass True

' Loop through error codes.
For intCode = 1 To 32767

On Error Resume Next
strErr = ""
' Attempt to raise each error.
Err.Raise intCode

' Check whether error is VBA, DAO, or Access error.
' If error is not a VBA error, the Description proper
' of the Err object contains "Application-defined or
If Err.Description <> conAppObjErr Then

strErr = Err.Description

' Use AccessError method to return descriptive string
' DAO and Access errors.
ElseIf AccessError(intCode) <> conAppObjErr Then

strErr = AccessError(intCode)
End If

' If error number has associated descriptive string,
If Len(strErr) > 0 Then

' Add new record to recordset.
rst.AddNew
' Add error number to table.
rst!errorcode = intCode
' Add descriptive string to table.
rst!ErrorString.AppendChunk strErr

Microsoft Office 97/Visual Basic Programmer's Guide Page 255 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

' Update record.
rst.Update

End If
Next intCode

DoCmd.Hourglass False
' Close recordset.
rst.Close
MsgBox "Errors table created."
' Show new table in Database window.
RefreshDatabaseWindow

CreateErrorsTable = True

Exit_CreateErrorsTable:
Exit Function

Error_CreateErrorsTable:
MsgBox Err & ": " & Err.Description
CreateErrorsTable = False
Resume Exit_CreateErrorsTable

End Function

Linking a Table to a Database

To use tables from an external data source in your database, you can link them
to your database. You can link tables that reside in another Microsoft Jet
database, or tables from other programs and file formats, such as Microsoft
Excel, dBASE, Microsoft FoxPro, Paradox, or previous versions of Microsoft Jet.
This is more efficient than opening the external database directly, especially if
the table comes from an ODBC data source.

To link a table to your database, use the CreateTableDef method to create a
new table. Next, specify settings for the Connect and SourceTableName
properties of the TableDef object. You can also set the Attributes property of
the TableDef object to specify that the object has certain characteristics.
Finally, append the TableDef object to the TableDefs collection.

For more information about the Connect, SourceTableName, and Attributes
properties, search DAO Help for the name of the property.

The following example links a Microsoft Excel version 8.0 worksheet to a
database as a table.

Important Before you run this code, make sure that the Microsoft Excel ISAM
driver (Msexcl35.dll) is installed on your system. If it's not, you need to run
Setup again to install it. The Microsoft Excel ISAM driver enables Microsoft
Excel 97 files to work with the Microsoft Jet database engine. For more
information about working with the Microsoft Excel ISAM driver, search
Microsoft Access Help for "Microsoft Excel driver."

Function LinkExcelTable() As Boolean
Dim dbs As DAO.Database, tdf As DAO.TableDef

Const errNoISAM As Integer = 3170
Const conPath As String = _

"C:\Program Files\Microsoft Office\Office\Samples\Nor

Microsoft Office 97/Visual Basic Programmer's Guide Page 256 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

On Error GoTo Err_LinkExcelTable
' Return a reference to Northwind database.
Set dbs = OpenDatabase(conPath)
' Create new TableDef object.
Set tdf = dbs.CreateTableDef("LinkedTable")
' Specify range that is source table.
tdf.SourceTableName = "DataRange"
' Specify connect string.
tdf.Connect = "EXCEL 8.0; DATABASE=C:\My Documents\XLTable.xl
' Append new TableDef object.
dbs.TableDefs.Append tdf
LinkExcelTable = True

Exit_LinkExcelTable:
Exit Function

Err_LinkExcelTable:
If Err = errNoISAM Then

Dim strErr As String
strErr = Err & ": " & Err.Description
strErr = strErr _

& "You may not have the ISAM driver installed
& "or you may have specified the Connect stri
& " Check the Connect string and the ISAM dri

MsgBox strErr, vbOKOnly, "Error!"
Else

MsgBox "Error " & Err & ": " & Err.Description
End If

End Function

The Field Object and the Fields Collection

In a Microsoft Jet workspace, the Field object represents a field in a table,
query, index, relation, or recordset. The Fields collection contains all Field
objects associated with a TableDef, QueryDef, Index, Relation, or
Recordset object. The following table shows the relationship between the Field
object and the Fields collection and other objects and collections in a Microsoft
Jet workspace.

The Fields collection is the default collection of a TableDef, QueryDef, Index,
Relation, or Recordset object, which means that you don't need to explicitly
refer to the Fields collection. For example, the following code fragment returns
a reference to the LastName field in the Employees table in the Northwind

Object or collection Is contained by Contains

Field object Fields collection Properties collection

Fields collection TableDef object

Index object

QueryDef object

Recordset object

Relation object

Field objects

Microsoft Office 97/Visual Basic Programmer's Guide Page 257 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

sample database.

Dim dbs As Database, tdf As TableDef, fld As Field

Const conPath As String = _
 "C:\Program Files\Microsoft Office\Office\Samples\Northwind.mdb"

Set dbs = OpenDatabase(conPath)
Set tdf = dbs.TableDefs("Employees")
Set fld = tdf!LastName

In the Fields collection of a TableDef, QueryDef, Index, or Relation object,
the Field object is a structural unit. It represents a column in a table with a
particular data type. If you're creating a database in Microsoft Access, you can
define fields for any of these objects and set most of their properties in the
Microsoft Access user interface, rather than by programming with DAO.

In a Recordset object, a Field object contains data, and you can use it to read
data from a record or write data to a record. You can't work with the fields in a
Recordset object in the Microsoft Access user interface; you must use DAO.

The Fields collection of a TableDef object contains all of the fields defined for a
particular table. For a QueryDef object, the Fields collection contains fields
that are included in the QueryDef object from one or more tables. The Fields
collection of an Index object includes the one or more fields on which the index
is defined.

For a Relation object, the Fields collection contains the fields involved in a
relationship. Typically, there are two fields in the Fields collection of a Relation
object. One is the field that is the primary key in the table, specified by the
Table property of the Relation object; the other is the field that is the
corresponding foreign key in the table, specified by the ForeignTable property
of the Relation object.

The Fields collection of a Recordset object contains the fields specified in the
source argument of the OpenRecordset method. The source argument
specifies the source of the records for the new Recordset object and can be a
table name, a query name, or an SQL statement that returns records.

The Value property of a Field object applies only to a Field object in the Fields
collection of a Recordset object. The Value property returns the value of the
data stored in that field for the current record. Because the Value property is
the default property of a Field object, and the Fields collection is the default
collection of a Recordset object, you can return the value of a field without
explicitly referring to either the Fields collection or the Value property. The
following code shows three ways you can refer to the Value property. It prints
the value of the LastName, FirstName, and Title fields for the first record in a
tabletype Recordset object based on the Employees table.

Dim dbs As Database, rst As Recordset
Const conPath As String = _
 "C:\Program Files\Microsoft Office\Office\Samples\Northwind.mdb"

Set dbs = OpenDatabase(conPath)
Set rst = dbs.OpenRecordset("Employees")
' Explicitly reference Fields collection and Value property.

Microsoft Office 97/Visual Basic Programmer's Guide Page 258 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Debug.Print rst.Fields("LastName").Value
' Implicitly reference Fields collection, explicitly reference Value
Debug.Print rst!FirstName.Value
' Implicitly reference Fields collection and Value property.
Debug.Print rst!Title

The Index Object and the Indexes Collection

The Index object represents an index on a table in your database in a Microsoft
Jet workspace. The Indexes collection contains all of the Index objects defined
for a particular table. The following table shows the relationship between the
Index object and the Indexes collection and other objects and collections in a
Microsoft Jet workspace.

An index speeds up searching and sorting on a table. You can improve query
performance in your database by indexing fields on both sides of joins, fields
that are sorted, or fields that are used to specify criteria for a query. However,
indexes add to the size of your database, and they can slow performance when
you update data in indexed fields, or when you add or delete data. They can
also reduce the efficiency of multiuser applications. If you evaluate your
performance needs, you can add or omit indexes appropriately.

An index specifies the order in which records are accessed from database tables
in a tabletype Recordset object. For example, suppose that you have an index
on the LastName field in the Employees table in the Northwind sample
database. If you create a tabletype Recordset object, then set the Recordset
object's Index property to the name of the new index, the records returned by
the Recordset object will be ordered alphabetically by last name.

You create an index on one or more fields in the table. When you create an
index with DAO, you must create the field or fields to be included in the index
and append them to the Fields collection of the Index object, as shown in the
following example.

Sub SeekRecord()
Const conPath As String = _

"C:\Program Files\Microsoft Office\Office\Samples\Nor
Dim dbs As Database, tdf As TableDef, idx As Index
Dim fld As Field, fldLast As Field, fldFirst As Field
Dim rst As Recordset

' Return a reference to Northwind database.
Set dbs = DBEngine(0).OpenDatabase(conPath)
' Return a reference to Employees table.
Set tdf = dbs.TableDefs("Employees")
' Create new index on LastName and FirstName fields.
Set idx = tdf.CreateIndex("FirstLastName")
' Create fields in Fields collection of new index.

Object or collection Is contained by Contains

Index object Indexes collection Fields collection

Properties collection

Indexes collection TableDef object Index objects

Microsoft Office 97/Visual Basic Programmer's Guide Page 259 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Set fldLast = idx.CreateField("LastName", dbText)
Set fldFirst = idx.CreateField("FirstName", dbText)
' Append Field objects.
idx.Fields.Append fldLast
idx.Fields.Append fldFirst
' Set Required property.
idx.Required = True
' Append new Index object.
tdf.Indexes.Append idx
' Open table-type recordset.
Set rst = dbs.OpenRecordset("Employees")
' Set Index property of Recordset object.
rst.Index = idx.Name
' Perform seek operation.
rst.Seek "=", "King", "Robert"

' Print values of all fields except Photo.
For Each fld In rst.Fields

If fld.Type <> dbLongBinary Then
Debug.Print fld

End If
Next fld

End Sub

When you create an index, you can also impose certain restrictions on the data
contained in the fields that are indexed. For example, if you want to designate a
particular field in a table as the primary key, you can create an Index object
and set its Primary and Unique properties to True. A primary key is a special
type of index. Each value in the field designated as the primary key must be
unique. A foreign key is also an index, although it doesn't require special
property settings. Other indexes are neither primary nor foreign keys and serve
only to speed up searching and sorting operations.

Note If you're designing a database in the Microsoft Access user interface, you
can add new indexes, change or delete existing indexes, and set index
properties in table Design view. To do so, click Indexes on the View menu.

For more information about indexes, search DAO Help for "Index object."

The QueryDef Object and the QueryDefs Collection

The QueryDef object represents a query in DAO. QueryDef objects can be
saved with your database, or they can be temporary. The QueryDefs collection
contains all QueryDef objects that are saved with your database and any
temporary QueryDef objects that are currently open. The following table shows
the relationship between the QueryDef object and the QueryDefs collection
and other objects and collections in a Microsoft Jet workspace.

Object or collection Is contained by Contains

QueryDef object QueryDefs collection Fields collection

Parameters collection

Properties collection

QueryDefs collection Database object QueryDef objects

Microsoft Office 97/Visual Basic Programmer's Guide Page 260 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Creating Persistent Queries

A query that's saved with your database is called a persistent query. You can
create persistent queries in Visual Basic by using DAO, or you can create them
in the Microsoft Access user interface.

To create a persistent query with DAO, use the CreateQueryDef method of a
Database object, as shown in the following example.

Const conPath As String = _
 "C:\Program Files\Microsoft Office\Office\Samples\Northwind.mdb"
Dim dbs As Database, qdf As QueryDef, rst As Recordset
Dim strSQL As String

strSQL = "SELECT FirstName, LastName, HireDate FROM Employees " _
& "WHERE Title = 'Sales Representative' ORDER BY HireDate;"

Set dbs = OpenDatabase(conPath)
Set qdf = dbs.CreateQueryDef("Sales Representatives", strSQL)
Set rst = qdf.OpenRecordset

You don't need to append a QueryDef object to the QueryDefs collection. If
you specify a value for the name argument of the CreateQueryDef method in a
Microsoft Jet workspace, DAO automatically appends the new QueryDef object
to the QueryDefs collection of the Database object. If you specify a zerolength
string ("") for the name argument, DAO creates a temporary QueryDef object.

Note In an ODBCDirect workspace, QueryDef objects are always temporary.

Creating Temporary Queries

You can create a temporary QueryDef object when you need to run an SQL
statement but don't want to store a new QueryDef object in the database. A
temporary QueryDef object is not appended to the database and exists until
the variable that represents it goes out of scope.

The following example creates two temporary QueryDef objects to return data
from the Microsoft SQL Server Pubs sample database. It first queries the table
of titles in the Microsoft SQL Server Pubs sample database and returns the title
and title identifier of the bestselling book. It then queries the table of authors
and instructs the user to send a bonus check to each author based on his or her
royalty share. The total bonus is $1,000 and each author should receive a
percentage of that amount.

This example uses ODBC through Microsoft Jet. You can apply the same
principles to create a temporary QueryDef object on a Microsoft Jet database or
an installable ISAM data source, or in an ODBCDirect workspace.

Function DetermineBonuses()
Const conPath As String = _

"C:\Program Files\Microsoft Office\Office\Samples\Nor
Dim dbsCurrent As Database, qdfBestSellers As QueryDef
Dim qdfBonusEarners As QueryDef, rstTopSeller As Recordset
Dim rstBonusRecipients As Recordset, strAuthorList As String

Microsoft Office 97/Visual Basic Programmer's Guide Page 261 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

' Open database from which QueryDef objects can be created.
Set dbsCurrent = OpenDatabase(conPath)

' Create temporary QueryDef object to retrieve data from
' Microsoft SQL Server database.
Set qdfBestSellers = dbsCurrent.CreateQueryDef("")
qdfBestSellers.Connect = "ODBC;DATABASE=Pubs;UID=sa;PWD=;DSN=
qdfBestSellers.SQL = "SELECT title, title_id FROM titles ORDE
Set rstTopSeller = qdfBestSellers.OpenRecordset()
rstTopSeller.MoveFirst
' Create temporary QueryDef to retrieve data from SQL Server

' based on results from first query.
Set qdfBonusEarners = dbsCurrent.CreateQueryDef("")
qdfBonusEarners .Connect = "ODBC;DATABASE=Pubs;UID=sa;PWD=;DS
qdfBonusEarners.SQL = "SELECT * FROM titleauthor WHERE title_

rstTopSeller!title_id & "'"
Set rstBonusRecipients = qdfBonusEarners.OpenRecordset()

' Build string containing names of authors to whom bonuses ar
Do While Not rstBonusRecipients.EOF

strAuthorList = strAuthorList & rstBonusRecipients!au
CStr(10* rstBonusRecipients!royaltyper) & vbC

rstBonusRecipients.MoveNext
Loop

' Display results.
MsgBox "Please send a check to the following " & _

"authors in the amounts shown: " & vbCr & _
strAuthorList & " for outstanding sales of " & _
rstTopSeller!Title & "."

rstBonusRecipients.Close
rstTopSeller.Close
dbsCurrent.Close

End Function

The Parameter Object and the Parameters Collection

A Parameter object represents a value supplied to a query. The Parameters
collection contains all of the Parameter objects defined for a QueryDef object.
The following table shows the relationship between the Parameter object and
the Parameters collection and other objects and collections in a Microsoft Jet
workspace.

When you want the user or the application to supply a value at run time that
limits the set of records returned by a query, you can define parameters for the
query. For example, you can create a query on an Orders table that prompts the
user to specify the range of records to return based on a range of order dates.

To create a parameter query, use the SQL PARAMETERS declaration to define
parameters for the query. The syntax for the PARAMETERS declaration is:

Object or collection Is contained by Contains

Parameter object Parameters collection Properties collection

Parameters collection QueryDef object Parameter objects

Microsoft Office 97/Visual Basic Programmer's Guide Page 262 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

PARAMETERS name datatype [, name datatype [, ...]]

The PARAMETERS declaration precedes the rest of the SQL statement and is
separated from the SQL statement by a semicolon (;). The following SQL
statement defines two parameters, Beginning OrderDate and Ending OrderDate,
whose datatype is DATETIME.

PARAMETERS [Beginning OrderDate] DATETIME,[Ending OrderDate] DATETIME
SELECT * FROM Orders
WHERE (OrderDate Between [Beginning OrderDate] And [Ending OrderDate]

For a list of data types you can use for parameters, search Microsoft Access Help
for "data types, SQL."

Each parameter that you define in the SQL statement is represented by a
Parameter object in the Parameters collection of the QueryDef object based
on that SQL statement. You specify the value of a parameter by setting the
Value property of the Parameter object. The following example creates a new
parameter query.

Function NewParameterQuery(dteStart As Date, dteEnd As Date) As Boole
Dim dbs As Database, qdf As QueryDef, rst As Recordset
Dim strSQL As String

On Error Resume Next
' Return reference to current database.
Set dbs = CurrentDb
' Construct SQL string.
strSQL = "PARAMETERS [Beginning OrderDate] DateTime, " _

& "[Ending OrderDate] DateTime; SELECT * FROM Orders
"WHERE (OrderDate Between [Beginning OrderDate] " _
& "And [Ending OrderDate]);"

' Delete query if it already exists.
dbs.QueryDefs.Delete "ParameterQuery"

On Error GoTo Err_NewParameterQuery
' Create new QueryDef object.
Set qdf = dbs.CreateQueryDef("ParameterQuery", strSQL)

' Supply values for parameters.
If dteStart > dteEnd Then

MsgBox "Start date is later than end date."
Exit Function

End If
qdf.Parameters("Beginning OrderDate") = dteStart
qdf.Parameters("Ending OrderDate") = dteEnd

' Open recordset on QueryDef object.
Set rst = qdf.OpenRecordset
rst.MoveLast
MsgBox "Query returned " & rst.RecordCount & " records."
NewParameterQuery = True

Exit_NewParameterQuery:
rst.Close
Set dbs = Nothing
Exit Function

Microsoft Office 97/Visual Basic Programmer's Guide Page 263 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Err_NewParameterQuery:
MsgBox "Error " & Err & ": " & Err.Description
NewParameterQuery = False
Resume Exit_NewParameterQuery

End Function

You can call this function from the Debug window as follows:

? NewParameterQuery(#6-30-95#, #6-30-96#)

Note If you're creating a database in Microsoft Access, you can define
parameters for a query in query Design view. For more information, search
Microsoft Access Help for "parameter queries."

The Relation Object and the Relations Collection

The Relation object represents a relationship between fields in tables and
queries. The Relations collection contains all stored Relation objects in a
database. The following table shows the relationship between the Relation
object and the Relations collection and other objects and collections in a
Microsoft Jet workspace.

You can use the Relation object to create, delete, or change relationships
between fields in tables and queries in your database. You can use the
properties of the Relation object to specify the type of relationship, which
tables supply the fields that participate in the relationship, whether to enforce
referential integrity, and whether to perform cascading updates and deletes.

A Relation object has a Fields collection that contains two fields, one in each
of the tables in the relationship. The fields that make up the relationship must
be of the same data type, and they must have common values. In most cases, a
relationship consists of a field that is the primary key in one table and a foreign
key in another table.

You use the Table and ForeignTable properties of the Relation object to
specify which tables take part in the relation and how they are related. If you
are creating a onetomany relationship, it is important that you set these
properties correctly. In a onetomany relationship, the table on the "one" side of
the relationship is the table in which the field to be joined is the primary key.
The setting for the Table property must be the name of this table. The table on
the "many" side of the relationship is the table in which the field to be joined is
the foreign key. The setting for the ForeignTable property must be the name
of this table.

For example, consider the relationship between the Employees table and the

Object or collection Is contained by Contains

Relation object Relations collection Fields collection

Properties collection

Relations collection Database object Relation objects

Microsoft Office 97/Visual Basic Programmer's Guide Page 264 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Orders table in the Northwind sample database. The two tables are joined on
the EmployeeID field. In the Employees table, this field is the primary key; all
values in this field must be unique. In the Orders table, the EmployeeID field is
a foreign key. The same value can occur more than once in this field. For the
Relation object that represents this relationship, the value of the Table
property is the table on the "one" side of the relationship; the Employees table.
The value of the ForeignTable property is the table on the "many" side of the
relationship; the Orders table.

The following example shows how to create a Relation object in Visual Basic.
The procedure deletes the existing relationship between the Employees table
and the Orders table in the Northwind sample database, then recreates it.

Function NewRelation() As Boolean
Dim dbs As Database
Dim fld As Field, rel As Relation
Const conPath As String = _

"C:\Program Files\Microsoft Office\Office\Samples\Nor

On Error GoTo Err_NewRelation
' Return reference to current database.
Set dbs = OpenDatabase(conPath)

' Find existing EmployeesOrders relation.
For Each rel In dbs.Relations

If rel.Table = "Employees" And rel.ForeignTable = "Or
' Prompt user before deleting relation.
If MsgBox(rel.Name & " already exists. " & vb

& "This relation will be deleted and
dbs.Relations.Delete rel.Name

' If user chooses Cancel, exit procedure.
Else

Exit Function
End If

End If
Next rel

' Create new relationship and set its properties.
Set rel = dbs.CreateRelation("EmployeesOrders", "Employees",
' Set Relation object attributes to enforce referential integ
rel.Attributes = dbRelationDeleteCascade + dbRelationUpdateCa
' Create field in Fields collection of Relation object.
Set fld = rel.CreateField("EmployeeID")
' Provide name of foreign key field.
fld.ForeignName = "EmployeeID"

' Append field to Relation object and Relation object to data
rel.Fields.Append fld
dbs.Relations.Append rel
MsgBox "Relation '" & rel.Name & "' created."
Set dbs = Nothing
NewRelation = True

Exit_NewRelation:
Exit Function

Err_NewRelation:
MsgBox "Error " & Err & ": " & Err.Description
NewRelation = False
Resume Exit_NewRelation

End Function

Microsoft Office 97/Visual Basic Programmer's Guide Page 265 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Note If you're designing a database in Microsoft Access, you can view and
change the relationships in your database in the Relationships window. In the
Database window, click Relationships on the Tools menu.

For more information about Relation objects, search DAO Help for "Relation
object."

The Recordset Object and the Recordsets Collection

The Recordset object represents a set of records within your database. The
Recordsets collection contains all open Recordset objects. The following table
shows the relationship between the Recordset object and the Recordsets
collection and other objects and collections in a Microsoft Jet workspace.

DAO offers five types of Recordset objects: tabletype, dynasettype, snapshot-
type, forwardonlytype, and dynamictype. Tabletype Recordset objects are
supported only in Microsoft Jet workspaces. Dynamictype Recordset objects
are available only in ODBCDirect workspaces. For more information, see
"DynamicType Recordset Objects" later in the chapter.

The sections that follow discuss some characteristics of each of the other four
types of Recordset objects. For more information about each type of
Recordset object, search DAO Help for the name of the particular type of
Recordset object.

Note that you should always close a Recordset object after you have finished
working with it, and before you close the Database object in which the
recordset was created. Use the Close method to close a Recordset object.

TableType Recordset Objects

The tabletype Recordset object represents a base table in your database. All of
the fields and records in the table are included in a tabletype Recordset object.
You can use a tabletype Recordset object to add, delete, or change records in a
table in a Microsoft Jet workspace. You can open a tabletype Recordset object
on base tables in a Microsoft Jet database, but not on tables in ODBC data
sources or linked tables. You can also use the tabletype Recordset object with
installable ISAM databases (such as FoxPro, dBASE, or Paradox) to open tables
directly, rather than linking them to your database.

The RecordCount property of a tabletype Recordset object returns the
number of records in the table. You can return the value of the RecordCount
property as soon as you've created the recordset; you don't need to use the
MoveLast method to move to the end of the recordset.

Object or collection Is contained by Contains

Recordset object Recordsets collection Fields collection

Properties collection

Recordsets collection Database object Recordset objects

Microsoft Office 97/Visual Basic Programmer's Guide Page 266 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

The tabletype Recordset object can use the indexes defined for the table.
When you create a tabletype Recordset object, you can set the recordset's
Index property to the name of an index that is defined for the table. You can
then use the Seek method to search for a particular record based on the
ordering criteria specified by the index.

Note You can't open a tabletype Recordset object on a linked table from an
external data source. Instead, you must use the OpenDatabase method to
open the external data source, and then open a tabletype Recordset object.

To create a tabletype Recordset object, specify the dbOpenTable constant for
the type argument of the OpenRecordset method. The following example
creates a tabletype Recordset object and then uses the Seek method to locate
a particular record and make that record the current record.

Function ReturnEmployeesRecord(strKey As String) As Boolean
Dim dbs As Database, rst As Recordset
Const conPath As String = _

"C:\Program Files\Microsoft Office\Office\Samples\Nor

On Error GoTo Err_ReturnEmployeesRecord
' Return reference to Northwind database.
Set dbs = OpenDatabase(conPath)
' Open table-type recordset on Employees table.
Set rst = dbs.OpenRecordset("Employees", dbOpenTable)
' Set Index property of recordset.
rst.Index = "LastName"
' Perform seek operation.
rst.Seek "=", strKey
' Check whether match is found.
If rst.NoMatch = False Then

' Print values of fields in first record found.
Debug.Print rst!EmployeeID, rst!FirstName & " " & rst
ReturnEmployeesRecord = True

Else
ReturnEmployeesRecord = False

End If

Exit_ReturnEmployeesRecord:
' Close recordset and database.
rst.Close
dbs.Close
Exit Function

Err_ReturnEmployeesRecord:
MsgBox "Error " & Err & ": " & Err.Description
ReturnEmployeesRecord = False
Resume Exit_ReturnEmployeesRecord

End Function

DynasetType Recordset Objects

The dynasettype Recordset object represents the result of a query on one or
more tables. A dynasettype Recordset object is a dynamic set of records that
you can use to add, change, or delete records from an underlying database
table or tables. With a dynasettype Recordset object, you can extract and
update data in a multipletable join, including linked tables from multiple

Microsoft Office 97/Visual Basic Programmer's Guide Page 267 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

databases. You can create a dynasettype Recordset object in a Microsoft Jet
workspace or an ODBCDirect workspace. A dynasettype Recordset object on a
remote data source consists of a series of bookmarks. Each bookmark uniquely
identifies one record in the recordset. The actual data in the fields of the
recordset is not returned until you specifically refer to the record that contains
that data. Microsoft DAO uses the bookmark to find the appropriate record and
return the requested data. To improve performance, Microsoft DAO returns only
the records that you explicitly refer to in your code; it doesn't necessarily return
data from every record in the recordset.

In order to return the value of the RecordCount property for a dynasettype
Recordset object, you must first use the MoveLast method to move to the end
of the recordset. Moving to the end of the recordset retrieves all of the records
in the recordset.

A dynasettype Recordset object may be updatable, but not all fields can be
updated in all dynasettype Recordset objects. To determine whether you can
update a particular field, check the setting of the DataUpdatable property of
the Field object.

A dynasettype Recordset object may not be updatable if:

� The data page the user is trying to update is locked by another user.

� The record has changed since it was last read.

� The user doesn't have permission to update the recordset.

� One or more of the tables or fields are readonly.

� The database is opened for readonly access.

� The Recordset object was created from multiple tables without a JOIN
statement.

� The Recordset object includes fields from an ODBC data source, or
Paradox table or tables, and there isn't a unique index on those table or
tables.

To create a dynasettype Recordset object, specify the dbOpenDynaset
constant for the type argument of the OpenRecordset method, as shown in
the following example.

Sub PrintHireDates()
Dim dbs As Database, rst As Recordset
Dim strSQL As String
Const conPath = "C:\Program Files\Microsoft Office\Office\Sam

' Open database and return reference to Database object.
Set dbs = DBEngine.Workspaces(0).OpenDatabase(conPath)
' Initialize SQL string.
strSQL = "SELECT FirstName, LastName, HireDate FROM Employees

"WHERE HireDate <= #1-1-93# ORDER BY HireDate;"
' Open dynaset-type recordset.
Set rst = dbs.OpenRecordset(strSQL, dbOpenDynaset)

Microsoft Office 97/Visual Basic Programmer's Guide Page 268 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

' Print records in recordset.
Do Until rst.EOF

Debug.Print rst!FirstName, rst!LastName, rst!HireDate
rst.MoveNext

Loop
' Close recordset and database.
rst.Close
dbs.Close

End Sub

SnapshotType Recordset Objects

A snapshottype Recordset object is a static set of records that represents the
results of a query. A snapshottype Recordset object includes all values for all
the requested fields in your query, whether you refer to them in code or not. A
snapshottype Recordset object requires fewer resources than the dynasettype
Recordset object, but the data in a snapshottype Recordset object cannot be
updated.

As you move through a snapshottype Recordset object for the first time, all
data is copied first into memory and then, if the recordset is large, into a
temporary Microsoft Jet database on the user's computer. You can scroll forward
and backward through the resulting set of data.

To create a snapshottype Recordset object, specify the dbOpenSnapshot
constant for the type argument of the OpenRecordset method.

ForwardOnlyType Recordset Objects

A forwardonlytype Recordset object is identical to a snapshot, except that you
can only scroll forward through its records. This improves performance in
situations where you only need to make a single pass through a result set.

When working with a forwardonlytype Recordset object, you cannot use the
MovePrevious or MoveFirst methods, or the Move method with a negative
integer for the rows argument. In a forwardonlytype Recordset object, only
one record exists at any given time. Therefore, you cannot use the MoveLast
method because it implies that you have a set of records. Forwardonlytype
Recordset objects offer less flexibility than other Recordset objects, but they
usually provide the greatest speed.

To create a forwardonlytype Recordset object, specify the
dbOpenForwardOnly constant for the type argument of the OpenRecordset
method.

The Group Object and the Groups Collection

The Group object represents a group of user accounts that have common
access permissions in a particular workspace. The Groups collection contains all
Group objects in a workspace or a user account. The following table shows the
relationship between the Group object and the Groups collection and other
objects and collections in a Microsoft Jet workspace.

Microsoft Office 97/Visual Basic Programmer's Guide Page 269 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

You can use the Group object, along with the User, Container, Document,
and Workspace objects, to secure your database. The Group object represents
a group of user accounts, and the User object represents an individual user
account. Users can be members of groups. When you establish security in your
database, you secure a particular object or set of objects by specifying what
type of permissions a user or group has for that object. If a group has certain
permissions for an object, all users in the group have the same permissions.
Conversely, if a user has permissions for an object, the group to which that user
belongs has the same permissions.

Note The easiest way to secure your database is through the Microsoft Access
user interface. From Microsoft Access, you can manage user and group accounts
and assign permissions for objects with relative ease. For more information
about securing a database in Microsoft Access, search Microsoft Access Help for
"security," or see Chapter 14, "Securing Your Application," in Building
Applications with Microsoft Access 97.

Both a Workspace object and a User object have a Groups collection. When
you create a Group object, you should first append it to the Groups collection
of a Workspace object. This notifies Microsoft Jet that the group exists.

After you've created a group and added it to the Groups collection of the
Workspace object, you need to specify which users belong to that group. To do
so, you can append the new Group object to the Groups collection of a User
object. In this way, you specify that a particular user belongs to this group.
Alternatively, you can append a User object to the Users collection in a Group
object to give a particular user account the permissions held by that group. In
either case, the existing Group object must already be a member of the
Groups collection of the current Workspace object.

The following example creates a new group, the Managers group, and appends
it to the Groups collection of the default workspace.

Function AddNewGroup() As Boolean
Dim wrk As Workspace, grp As Group

Const conAccountExists As Integer = 3390

On Error GoTo Err_AddNewGroup
Set wrk = DBEngine.Workspaces(0)
Set grp = wrk.CreateGroup("Managers", "123abc")
wrk.Groups.Append grp
AddNewGroup = True

Object or collection Is contained by Contains

Group object Groups collection Group objects

Properties collection

Users collection

Groups collection Workspace object

User object

Group objects

Microsoft Office 97/Visual Basic Programmer's Guide Page 270 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Exit_AddNewGroup:
Exit Function

Err_AddNewGroup:
If Err <> conAccountExists Then

MsgBox "Error " & Err & ": " & Err.Description
AddNewGroup = False

Else
AddNewGroup = True

End If
Resume Exit_AddNewGroup

End Function

After you've run this example, the Managers group exists, but no user accounts
belong to it. The example in the following section adds user accounts to the
Managers group.

The User Object and the Users Collection

The User object represents a user account with particular access permissions.
The Users collection contains all User objects in a given workspace or group.
The following table shows the relationship between the User object and the
Users collection and other objects and collections in a Microsoft Jet workspace.

Like the Groups collection, the Users collection is a member of a Workspace
object. Each User object in the Users collection of a Workspace object also
has a Groups collection, in the same way that each Group object in the
Groups collection of a Workspace object has a Users collection. To make a
user a member of a particular group, you can append a User object to the
Users collection of that Group object. You can achieve the same result by
appending the Group object to the Groups collection of that User object. In
either case, the existing User object must already be a member of the Users
collection of the current Workspace object.

The following example creates a new User object and appends it to the Users
collection of the default workspace. Next, it appends the User object to the
Users collection of the Managers group created in the previous example. Note
that because the User object doesn't already exist in the Users collection of the
Group object, you must use the CreateUser method a second time to create
the object there. However, you don't need to specify the pid and password
arguments a second time.

Object or collection Is contained by Contains

User object Users collection Groups collection

Properties collection

User objects

Users collection Workspace object

Group object

User objects

Microsoft Office 97/Visual Basic Programmer's Guide Page 271 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Function AddNewUser() As Boolean
Dim wrk As Workspace, grp As Group, usr As User

Const conAccountExists As Integer = 3390

On Error GoTo Err_AddNewUser
Set wrk = DBEngine.Workspaces(0)
Set usr = wrk.CreateUser("Joe Manager", "efg456", "")
wrk.Users.Append usr
Set grp = wrk.Groups("Managers")
Set usr = grp.CreateUser("Joe Manager")
grp.Users.Append usr
AddNewUser = True

Exit_AddNewUser:
Exit Function

Err_AddNewUser:
If Err <> conAccountExists Then

MsgBox "Error " & Err & ": " & Err.Description
AddNewUser = False

Else
AddNewUser = True

End If
Resume Exit_AddNewUser

End Function

The Container Object and the Containers Collection

The Container object represents a particular set of objects in a database for
which you can assign permissions in a secure workgroup. The Containers
collection contains all the Container objects in the database. The following
table shows the relationship between the Container object and the Containers
collection and other objects and collections in a Microsoft Jet workspace.

DAO provides three types of Container objects; every database contains at
least these three Container objects. The following table describes the types of
Container objects provided by DAO.

Each Container object can contain a Documents collection. The Documents

Object or collection Is contained by Contains

Container object Containers collection Documents collection

Properties collection

Containers collection Database object Container objects

Container name Contains information about

Databases Saved databases

Tables Saved tables and queries

Relationships Saved relationships

Microsoft Office 97/Visual Basic Programmer's Guide Page 272 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

collection contains individual Document objects, each of which represents a
document in your database. For more information about Document objects,
see the following section, "The Document Object and the Documents
Collection."

In addition to the Container objects provided by DAO, an application may
define its own Container objects. For example, the following table lists the
Container objects defined by Microsoft Access.

You use Container objects to establish permissions on a set of objects for a
user or group. The following example establishes permissions for a group, and
any users that belong to it, for the Tables container. To establish permissions,
the function first sets the UserName property of the Tables container to the
name of a group, then sets the Permissions property to the appropriate
permissions.

Function SetGroupPermissions(strGroupName As String) As Boolean
Dim dbs As Database, ctr As Container

Const conPath As String = _
"C:\Program Files\Microsoft Office\Office\Samples\Nor

On Error GoTo Err_SetGroupPermissions
Set dbs = DBEngine(0).OpenDatabase(conPath)
' Return a reference to the Databases container.
Set ctr = dbs.Containers("Databases")
' Set UserName property to name of group.
ctr.UserName = strGroupName
' Set permissions for the group on the Databases container.
ctr.Permissions = dbSecDBOpen

' Return a reference to the Tables container.
Set ctr = dbs.Containers("Tables")
' Set UserName property to name of group.
ctr.UserName = strGroupName
' Set permissions for the group on the Tables container.
ctr.Permissions = dbSecRetrieveData or dbSecInsertData or _

dbSecReplaceData or dbSecDeleteData
SetGroupPermissions = True

Exit_SetGroupPermissions:
Exit Function

Err_SetGroupPermissions:
MsgBox "Error " & Err & ": " & Err.Description
SetGroupPermissions = False
Resume Exit_SetGroupPermissions

End Function

Container name Contains information about

Forms Saved forms

Modules Saved modules

Reports Saved reports

Scripts Saved macros

Microsoft Office 97/Visual Basic Programmer's Guide Page 273 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

To establish permissions for the Managers group on the Tables container, you
can call the SetGroupPermissions function as follows.

Sub SetManagerPermissions()
If SetGroupPermissions("Managers") = True Then

MsgBox "Permissions for Managers group set successful
Else

MsgBox "Permissions for Managers group not set."
End If

End Sub

The Document Object and the Documents Collection

The Document object represents an individual object in a database for which
you can assign permissions in a secure workgroup. The Documents collection
contains all of the Document objects in a given Container object. The
following table shows the relationship between the Container object and the
Containers collection and other objects and collections in a Microsoft Jet
workspace.

The following table describes the Document objects provided by DAO. It lists
the type of object each Document object describes, the name of its Container
object, and what type of information it contains.

Other applications can define additional Document objects. For example, the
following table lists the Document objects defined by Microsoft Access.

Object or collection Is contained by Contains

Document object Documents collection Properties collection

Documents collection Container object Document objects

Document Container
Contains information
about

Database Databases Saved database

Table or query Tables Saved table or query

Relationship Relationships Saved relationship

Document Container
Contains information
about

Form Forms Saved form

Macro Scripts Saved macro

Module Modules Saved module

Report Reports Saved report

SummaryInfo Databases Database document
summary

Microsoft Office 97/Visual Basic Programmer's Guide Page 274 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

The following example establishes permissions for a particular user on all the
existing Table Document objects in the Documents collection of the Tables
Container object. Table Document objects represent either tables or queries.

Function SetPermissionsOnDocument(strUserName As String) As Boolean
Dim dbs As Database, ctr As Container, doc As Document

Const conPath As String = _
"C:\Program Files\Microsoft Office\Office\Samples\Nor

On Error GoTo Err_SetPermissionsOnDocument
' Return reference to Northwind sample database.
Set dbs = DBEngine(0).OpenDatabase(conPath)
' Return reference to Tables container.
Set ctr = dbs.Containers("Tables")
' Enumerate through documents in Tables container.
For Each doc In ctr.Documents

' Set UserName property to name of user.
doc.UserName = strUserName
' Set permissions for that user on the document.
doc.Permissions = dbSecRetrieveData or dbSecInsertDat

dbSecReplaceData or dbSecDeleteData
Next doc
SetPermissionsOnDocument = True

Exit_SetPermissionsOnDocument:
Exit Function

Err_SetPermissionsOnDocument:
MsgBox "Error " & Err & ": " & Err.Description
SetPermissionsOnDocument = False
Resume Exit_SetPermissionsOnDocument

End Function

The Properties Collection

Most DAO objects contain a Properties collection. Each Property object in the
Properties collection corresponds to a property of the object. You can use an
object's Properties collection either to determine which properties apply to a
particular object or to return their settings. For example, the following
procedure loops through the properties that apply to the Database object,
which represents the current database. The procedure displays the name of
each property in the Debug window.

Sub DisplayProperties()
Dim dbs As Database, prp As Property

Const conPath As String = _
"C:\Program Files\Microsoft Office\Office\Samples\Nor

' Open database and return reference.
Set dbs = OpenDatabase(conPath)
Debug.Print "Current Database Properties"
' Enumerate Properties collection.
For Each prp In dbs.Properties

Debug.Print prp.Name
Next prp

UserDefined Databases User-defined properties

Microsoft Office 97/Visual Basic Programmer's Guide Page 275 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

dbs.Close
End Sub

Some properties of DAO objects don't automatically exist in the Properties
collection for that object. Before you can set a property of this type, you must
create a Property object to represent the property and append the new
Property object to the Properties collection. After you create the property and
append it to the collection, you can set or read it as you would any other
property.

When you're writing code that uses this type of property, it's a good idea to
implement error handling in case the property does not yet exist in the
collection. The following function is a generic procedure that you can use to set
any property that doesn't automatically exist in an object's Properties
collection. It implements error handling. The first time you call the procedure,
an error occurs because the property does not yet exist within the Properties
collection. Within the error handler, the procedure creates the new Property
object and appends it to the collection. The next time you call the procedure,
the error does not occur because the property already exists, and the property
is set with the value you've specified.

Function SetProperty(obj As Object, strName As String, _
intType As Integer, varSetting As Variant) As Boolean

Dim prp As Property

Const conPropNotFound As Integer = 3270

On Error GoTo Error_SetProperty
' Explicitly refer to Properties collection.
obj.Properties(strName) = varSetting
SetProperty = True

Exit_SetProperty:
Exit Function

Error_SetProperty:
If Err = conPropNotFound Then

' Create property, denote type, and set initial value
Set prp = obj.CreateProperty(strName, intType, varSet
' Append Property object to Properties collection.
obj.Properties.Append prp
obj.Properties.Refresh
SetProperty = True
Resume Exit_SetProperty

Else
MsgBox Err & ": " & vbCrLf & Err.Description
SetProperty = False
Resume Exit_SetProperty

End If
End Function

To set the ReplicableBool property of a Database object, you can call the
preceding function as follows.

Sub ReplicateDatabase()
Dim dbs As Database

Const conPath As String = _

Microsoft Office 97/Visual Basic Programmer's Guide Page 276 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

"C:\Program Files\Microsoft Office\Office\Samples\Nor

Set dbs = OpenDatabase(conPath, True)
If SetProperty(dbs, "ReplicableBool", dbBoolean, True) Then

Debug.Print "Database replicated successfully."
Else

Debug.Print "Database not replicated."
End If

End Sub

The SetProperty function shown in the previous example is a generic procedure
that you can use to set any property, including those that must first be
appended to the Properties collection. You can compare this function to the
ReplicateDatabase function shown earlier in this chapter, in "Creating Database
Replicas with DAO." Both functions achieve the same end, but the SetProperty
function can be used to set any property, while the ReplicateDatabase function
sets only the ReplicableBool property.

Each time you set or read a property that doesn't automatically exist in the
Properties collection for an object, you must refer to the Properties collection
explicitly. For example, each time you refer to the ReplicableBool property
after it has been set, you must refer to it within the Properties collection, as
shown in the following example.

Dim dbs As Database
Const conPath As String = _
 "C:\Program Files\Microsoft Office\Office\Samples\Northwind.mdb"
Set dbs = OpenDatabase(conPath)
Debug.Print dbs.Properties("ReplicableBool")

You can also use the SetProperty function shown in the previous example to
define custom properties on DAO objects. For example, you may want to define
a property that stores the name of the user who last modified a particular table.
When you set or read a custom property, you must refer to the Properties
collection explicitly, as shown in the previous examples.

Some applications define their own properties for DAO objects. For example,
Microsoft Access defines properties for DAO TableDef, QueryDef, Field, and
Document objects. If you're working with a database that has been opened in
Microsoft Access, some of these properties may be defined for DAO objects.

For more information about the Properties collection, search DAO Help for
"properties, collection" and "CreateProperty method."

Accessing ODBC Data

When you're working with an ODBC data source, you'll need to decide whether
you should use ODBC with Microsoft Jet, ODBCDirect, or both. This section
discusses the advantages of both ODBC with Microsoft Jet and ODBCDirect. It
also explains how to register an ODBC data source, whether you're working with
a Microsoft Jet workspace or with an ODBCDirect workspace.

Accessing ODBC Data with Microsoft Jet

Microsoft Office 97/Visual Basic Programmer's Guide Page 277 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

The following capabilities are supported in Microsoft Jet workspaces, but not in
ODBCDirect workspaces:

� Updatable Joins You can update data in Recordset objects based on
multipletable joins.

� Support for Linked Tables You can store persistent links to server data
in a local Microsoft Jet database. When you link a table, you can cache
information about the table's structure, including field and index
information, in your local database. The next time you access that table,
the connection is quicker because you don't need to retrieve the structural
information from the data source again.

� Support for the Find Methods You can use the FindFirst, FindNext,
FindPrevious, and FindLast methods with Recordset objects in a
Microsoft Jet workspace.

� Partial Failures of Update Queries If you have a bulkoperation query,
and it fails for some reason, the query stops, giving you the opportunity
to decide whether or not you want to commit the changes made up to the
point of failure.

� UserDefined Properties You can customize DAO objects by adding
persistent properties to existing objects. For example, you can add a
Description property to an object so that you can store descriptive text
about the object.

� Crosstab Queries You can use the SQL TRANSFORM statement to
create crosstab queries that summarize data.

� Heterogeneous Data Access You can work with server data, native
Microsoft Jet database (.mdb file) data, and external installable ISAM data
such as FoxPro, Paradox, and dBASE data. You can perform joins on
tables in different data sources.

� Programmatic Data Definition Language (DDL) You can use DAO to
perform operations that affect the structure of your database. For
example, you can create, delete, and modify tables.

� Form and Control Binding If your application requires that forms or
controls be bound to data in an ODBC data source, you must use Microsoft
Jet. Data accessed within an ODBCDirect workspace cannot be bound to
forms or controls because ODBCDirect does not support linked tables.

Accessing ODBC Data with ODBCDirect

With ODBCDirect, you can access server data by using the existing DAO object
model directly on top of the ODBC application programming interface (API).
ODBCDirect implements a thin code layer over the ODBC API that establishes
connections, creates cursors, and runs complex procedures using minimal
workstation resources, without going through Microsoft Jet. ODBCDirect offers
the following advantages:

Microsoft Office 97/Visual Basic Programmer's Guide Page 278 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

� Direct Access Your application can access ODBC data sources directly.
You can improve performance, reduce network traffic, and take advantage
of the server's capabilities by processing more data on the server.

� Reduced Resource Requirements You don't have to go through the
Microsoft Jet database engine, so your application requires fewer
resources at the workstation. If you're using ODBCDirect from Microsoft
Access, keep in mind that Microsoft Access always loads Microsoft Jet,
even though ODBCDirect operations don't go through Microsoft Jet.

� Improved Access to ServerSpecific Functionality You can take
advantage of features specific to the ODBC server that aren't available if
you're using ODBC through Microsoft Jet. For example, in an ODBCDirect
workspace, you can specify where cursors are located — on the client or
on the server — for servers that support different types of cursors. In
addition, to interact with stored procedures on the server, you can specify
input values and check return values; operations that are not possible in a
Microsoft Jet workspace.

� Asynchronous Queries You can run a query and perform other
operations without waiting for the query to finish. You can then check
properties to keep track of the query's progress. You can enhance
concurrency and optimize performance with asynchronous queries.

� Batch Optimistic Updating With batch optimistic updating, you can
cache Recordset changes locally and then submit these changes to the
server in a single batch.

� Flexible Stored Procedure Execution You can handle output
parameters and return values from stored procedures.

Note You can't perform DDL operations with DAO in an ODBCDirect
workspace, but you can run SQL DDL statements to modify the structure of the
database.

Registering an ODBC Data Source

Before you can use ODBC in a Microsoft Jet workspace or in an ODBCDirect
workspace, you must register the ODBC data source. Registering the data
source stores information about the data source in the Windows Registry and
makes this information available to applications. You can register a data source
from the ODBC data source manager or from Visual Basic.

To register a SQL Server data source by using the ODBC data source
manager

1. In Windows Control Panel, doubleclick the 32bit ODBC icon.

2. Click Add and then doubleclick the ODBC driver for the data source you
want to access. For example, doubleclick SQL Server.

3. In the Data Source Name box, type a data source name (DSN). This can

Microsoft Office 97/Visual Basic Programmer's Guide Page 279 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

be any string, such as SalesDB or Pubs. The string doesn't have to
correspond to the actual name of a database or table you want to access.

4. In the Description box, type a description of the database, such as Sales
Data for 1996. You can enter any text.

5. In the Server box, type the name of the network server where your data
source resides. Do not include a doublebackslash (\\) before the name.

6. Click Options, and then type the name of the database you want to
access in the Database Name box. For example, to specify the Microsoft
SQL Server Pubs sample database, type Pubs.

Note This procedure describes the steps for registering a Microsoft SQL Server
data source. The steps for registering other ODBC data sources may vary
because each data source driver requires a different set of information. If the
dialog box for the data source you selected has values not described in the
preceding steps, click the Help button for more information.

In some cases, you may want to register the data source in Visual Basic code
instead of relying on users to register it with the ODBC data source manager. To
do this, use the RegisterDatabase method of the DBEngine object. The
following example registers a data source named Pubs.

Function RegisterDB() As Boolean
Dim str As String

On Error GoTo Err_RegisterDB
' Build keywords string.
str = "Description=SQL Server on Server Publishers" & _

vbCr & "OemToAnsi=No" & _
vbCr & "Network=(Default)" & _
vbCr & "Address=(Default)" & _
vbCr & "Server=Publishers" & _
vbCr & "Database=Pubs"

' Register database.
DBEngine.RegisterDatabase "Pubs", "SQL Server", True, str
RegisterDB = True

Exit_RegisterDB:
Exit Function

Err_RegisterDB:
MsgBox "Error " & Err & ": " & Err.Description
RegisterDB = False
Resume Exit_RegisterDB

End Function

Using DAO with ODBCDirect

The object model for an ODBCDirect workspace includes a subset of the objects
in a Microsoft Jet workspace, with the addition of a new object, the Connection
object. The following diagram shows the object model for ODBCDirect
workspaces; the subsequent sections describe the objects themselves, to the
extent that they differ from the objects in the Microsoft Jet object model.

Microsoft Office 97/Visual Basic Programmer's Guide Page 280 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

The DBEngine Object

The DBEngine object contains both Microsoft Jet and ODBCDirect workspaces.
As mentioned earlier in this chapter, the DefaultType property of the
DBEngine object determines what type of Workspace object is created by
default when you use the CreateWorkspace method. If you set the
DefaultType property to dbUseODBC, then the default workspace is an
ODBCDirect workspace. When you're creating a workspace, you can override the
setting for this property by specifying either dbUseJet or dbUseODBC as the
type argument of the CreateWorkspace method. For example, if the
DefaultType property is set to dbUseJet and you want to create an
ODBCDirect workspace, specify the dbUseODBC constant as the type argument
of the CreateWorkspace method. Conversely, if the DefaultType property is
set to dbUseODBC and you want to create a Microsoft Jet workspace, specify
the dbUseJet constant as the type argument of the CreateWorkspace
method.

Note If you're programming in Microsoft Access, avoid setting the DefaultType
property to dbUseODBC. Because Microsoft Access uses DAO and Microsoft Jet
for many types of operations, setting the DefaultType property to dbUseODBC
may cause unexpected results.

The following example creates an ODBCDirect workspace.

Dim wrkODBC As Workspace
Set wrkODBC = DBEngine.CreateWorkspace("NewODBCWrk", "Admin", "", dbU

Because you can use both Microsoft Jet and ODBCDirect workspaces in your
code, you may need to determine the type of a Workspace object after it is
created. You can do this by using the Type property of the Workspace object.

Microsoft Office 97/Visual Basic Programmer's Guide Page 281 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

The Type property is readonly once it is set and returns either dbUseJet or
dbUseODBC.

The Workspace Object and the Workspaces
Collection

The Workspace object represents an ODBCDirect workspace. The Workspaces
collection contains the set of all active ODBCDirect workspaces. The following
table shows the relationship between the Workspace object and the
Workspaces collection and other objects and collections in an ODBCDirect
workspace.

The first step in using ODBCDirect is to create an ODBCDirect workspace with
the CreateWorkspace method. The ODBCDirect workspace routes calls directly
to the ODBC application programming interface (API), as opposed to the
Microsoft Jet workspace, which first routes calls to the Microsoft Jet database
engine, and then to the ODBC API if you're using ODBC.

The Connection Object and the Connections
Collection

After you've created an ODBCDirect workspace, you can connect to an ODBC
data source. To connect to an ODBC data source, you can use the
OpenConnection method to open a new Connection object, or you can use
the OpenDatabase method to open a new Database object. This section
explains how to use the Connection object. For information on how to use a
Database object, see the following section, "The Database Object and the
Databases Collection."

A Connection object represents a connection to an ODBC database in an
ODBCDirect workspace. The Connections collection contains all currently open
Connection objects. When you open a Connection object, it is automatically
appended to the Connections collection of the Workspace object. When you
close a Connection object with the Close method, it is removed from the
Connections collection.

The Connection object provides the following advantages for accessing ODBC
data:

� Asynchronous Connection Your application can connect to an ODBC
data source asynchronously. Rather than pausing execution while the
connection is established, your code can continue to perform other
operations, and can later check to determine whether the connection was

Object or collection Is contained by Contains

Workspace object Workspaces collection Connections collection

Databases collection

Properties collection

Workspaces collection DBEngine object Workspace objects

Microsoft Office 97/Visual Basic Programmer's Guide Page 282 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

made successfully.

� Asynchronous Queries Your application can run queries against your
ODBC data source asynchronously. Rather than pausing execution while a
long query runs, your code can perform other tasks, and then check later
to determine whether the query has run successfully.

� QueryDef Objects You can define QueryDef objects that represent
queries in the ODBC data source.

You can use the OpenConnection method to create a Connection object. The
syntax of the OpenConnection method is:

Set connection = workspace.OpenConnection (name, options, readonly,
connect)

The connection argument is the name of the new Connection object. The
workspace argument is the name of an ODBCDirect Workspace object from
which you're creating the new Connection object.

The name argument indicates the name of the registered data source. You can
reference the new Connection object by using either the data source name
(DSN) or the Connection object's ordinal position within its collection. The
options argument determines if and when to prompt the user to establish the
connection, and whether or not to open the connection asynchronously. The
readonly argument controls the updatability of the data accessed through the
connection. Set this argument to True to prevent updates; set it to False to
allow updates.

The connect argument is a valid connect string that supplies parameters to the
ODBC driver manager. These parameters can include user name, password,
default database, and data source name (DSN), which overrides the value
provided in the name argument.

The connect string must start with "ODBC;", and must contain a series of values
needed by the driver to access the data. The actual connect string can vary
depending on the data source you're trying to access; different ODBC data
sources require different parameters in the connect argument. Usually, the
minimum requirement is a user ID, a password, and a DSN, as shown in the
following example:

ODBC;UID=JamesK;PWD=OpenSesame;DSN=MasterData

When the ODBC driver processes the connect string and one or more of the
parameters required by the data source is missing, the driver displays a dialog
box that asks for the information. If you don't want this dialog box displayed,
you must make sure that the connect string has all the required information.

Note If you are trying to connect to a Microsoft SQL Server database that uses
integrated security, omit the user ID (UID) and password (PWD) values because
your Windows NT® user name and password are automatically used. For
example, the connect string may look something like the following:

Microsoft Office 97/Visual Basic Programmer's Guide Page 283 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

ODBC;UID=;PWD=;DATABASE=Pubs;DSN=Pubs

For more information about parameters that can be included in a connect string,
search DAO Help for "Connect property." The following example illustrates how
to use the OpenConnection method to open a new Connection object.

Function OpenPubsConnection() As Boolean
Dim wrk As Workspace, cnn As Connection, rst As Recordset, fl
Dim strConnect As String, strSQL As String

On Error GoTo Err_OpenPubsConnection
' Create connnect string.
strConnect = "ODBC;DSN=Pubs;UID=SA;PWD=;DATABASE=Pubs"
' Create SQL string.
strSQL = "SELECT * FROM Authors WHERE State = 'MD';"

' Create ODBCDirect workspace.
Set wrk = DBEngine.CreateWorkspace("NewODBCDirect", "sa", "",
' Open connection.
Set cnn = wrk.OpenConnection("Pubs", dbDriverNoPrompt, False,
' Open recordset on connection.
Set rst = cnn.OpenRecordset(strSQL, dbOpenDynaset)
' Print values in recordset.
Do Until rst.EOF

For Each fld In rst.Fields
Debug.Print fld.Name, fld.Value

Next fld
Debug.Print
rst.MoveNext

Loop
OpenPubsConnection = True

Exit_OpenPubsConnection:
rst.Close
cnn.Close
Exit Function

Err_OpenPubsConnection:
MsgBox "Error " & Err & ": " & Err.Description
OpenPubsConnection = False
Resume Exit_OpenPubsConnection

End Function

After you've created a Connection object, you can open Recordset objects and
run queries on the Connection object.

When you open a Connection object, a corresponding Database object is
created and appended to the Databases collection in the same workspace.
When you open a database in an ODBCDirect workspace, a Connection object
is likewise created and appended to the Connections collection. When you
close either the Connection object or the Database object, the corresponding
object is also closed.

Note Before you close a Connection object, close all open Recordset objects
within it.

Opening Connections Asynchronously

Microsoft Office 97/Visual Basic Programmer's Guide Page 284 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

In some cases, opening connections to data sources can take a long time,
making it necessary for users to wait until the connection completes or an error
occurs. To reduce the amount of time users must wait, you can open a
connection asynchronously. This means that your application can complete
other tasks while the connection is being established. To open a connection
asynchronously, specify the dbRunAsync constant for the options argument of
the OpenConnection method, as shown in the following example.

Dim wrk As Workspace, cnn As Connection, strConnect As String

Set wrk = DBEngine.CreateWorkspace("NewODBCDirect", "sa", "", dbUseOD
strConnect = "ODBC;DSN=Pubs;UID=SA;PWD=;DATABASE=Pubs"
Set cnn = wrk.OpenConnection("",dbDriverNoPrompt + dbRunAsync, False,

You can use the StillExecuting property of the Connection object to see if the
connection has been established, or use the Cancel property of the Connection
object to cancel the connection attempt if it takes too long.

The Database Object and the Databases Collection

You can also connect to an ODBC data source by using the OpenDatabase
method to open a Database object. However, the Database object in an
ODBCDirect workspace doesn't support all of the functionality of a Connection
object. Specifically, if you're using a Database object, you can't connect
asynchronously, run queries asynchronously, or define QueryDef objects that
represent queries in the ODBC data source.

To connect to an ODBC data source with the OpenDatabase method in an
ODBCDirect workspace, specify a valid connect string for the connect argument
of the OpenDatabase method, as shown in the following example.

Dim wrk As Workspace, dbs As Database
Dim strConnect As String

strConnect = "ODBC;DSN=Pubs;UID=SA;PWD=;DATABASE=Pubs"
Set wrk = DBEngine.CreateWorkspace("NewODBCDirect", "sa", "", dbUseOD
Set dbs = wrk.OpenDatabase("Pubs", dbDriverNoPrompt, False, strConnec

Switching Between Connection and Database Objects

With ODBCDirect, you can open a Database object and a Connection object
against the same ODBC data source, and use both in your code. You can then
take advantage of each object for its different capabilities.

Alternatively, you may want to create a single object and then switch to the
other type when needed. To do this, use the Connection property of the
Database object or the Database property of the Connection object. You can
use these properties to create Connection objects from Database objects and
to create Database objects from Connection objects. This is especially useful
for adding ODBCDirect capabilities to existing applications that only use
Database objects.

Microsoft Office 97/Visual Basic Programmer's Guide Page 285 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

For example, you can use a Database object for most of your ODBC data
access needs, but when you need to run an asynchronous query, you can create
a Connection object from the Database object and then run the query on the
Connection object. The following example illustrates this technique.

Sub DeleteRecords()
Dim dbs As Database, strConnect As String
Dim cnn As Connection

' Open database in default workspace.
strConnect = "ODBC;DSN=Pubs;DATABASE=Pubs;UID=sa;PWD=;"
Set dbs = OpenDatabase("", False, False, strConnect)

' Try to create Connection object from a Database object. If
' ODBCDirect workspace, the query runs asynchronously. If wor
' Microsoft Jet workspace, an error occurs and the query runs

Err = 0
On Error Resume Next
Set cnn = dbs.Connection
If Err = 0 Then

cnn.Execute "DELETE FROM Authors", dbRunAsync
Else

dbs.Execute "DELETE FROM Authors"
End If

End Sub

The QueryDef Object and the QueryDefs Collection

The QueryDef object represents a temporary definition of a query in an
ODBCDirect workspace. The QueryDefs collection contains all QueryDef
objects that currently exist in the workspace. The following table shows the
relationship between the QueryDef object and the QueryDefs collection and
other objects and collections in an ODBCDirect workspace.

Unlike QueryDef objects created in a Microsoft Jet workspace, QueryDef
objects created in an ODBCDirect workspace are always temporary — they are
not saved within the data source before they run, even if you assign them a
name.

Running Asynchronous Queries

Creating and running queries in an ODBCDirect workspace is similar to creating
and running queries in a Microsoft Jet workspace. You create the query by
invoking the CreateQueryDef method on a Connection object, and then use
the Execute or OpenRecordset methods on the resulting query.

Object or collection Is contained by Contains

QueryDef object QueryDefs collection Parameters collection

Properties collection

QueryDefs collection Connection object QueryDef objects

Microsoft Office 97/Visual Basic Programmer's Guide Page 286 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

You can use asynchronous queries so that users can continue using your
application while the query runs. You can also give users the ability to cancel
asynchronous queries if they are taking too long. The following example runs an
asynchronous query.

Function DeleteLargeSales() As Boolean
Dim wrk As Workspace, rst As Recordset
Dim cnn As Connection, qdf As QueryDef
Dim strConnect As String, strSQL As String
Dim errObj As Error

On Error GoTo Err_DeleteLargeSales
' Create ODBCDirect workspace.
Set wrk = DBEngine.CreateWorkspace("ODBC", "sa", "", dbUseODB
' Create connect string.
strConnect = "ODBC;DSN=Publishers;UID=SA;PWD=;DATABASE=Pubs"
' Open connection on workspace.
Set cnn = wrk.OpenConnection("", dbDriverNoPrompt, False, str
' Delete existing QueryDef named DeleteLargeSales.
For Each qdf In cnn.QueryDefs

If qdf.Name = "DeleteLargeSales" Then
cnn.QueryDefs.Delete "DeleteLargeSales"

End If
Next qdf

' Create QueryDef.
Set qdf = cnn.CreateQueryDef("DeleteLargeSales")
strSQL = "DELETE FROM sales WHERE qty = 100"
qdf.SQL = strSQL

' Run query asynchronously.
qdf.Execute dbRunAsync

While qdf.StillExecuting
' Additional code runs here while query runs.
' Check StillExecuting property to determine whether query ha
Wend

DeleteLargeSales = True

Exit_DeleteLargeSales:
cnn.Close
wrk.Close
Exit Function

Err_DeleteLargeSales:
For Each errObj In Errors

Debug.Print errObj.Number, errObj.Description
Next errObj
DeleteLargeSales = False
Resume Exit_DeleteLargeSales

End Function

The preceding example uses a QueryDef object on a Connection object to run
an asynchronous query. You can also use the Execute method directly on the
Connection object, as shown in the following example.

Dim cnn As Connection, strConnect As String

strConnect = "ODBC;DSN=Pubs;UID=SA;PWD=;DATABASE=Pubs"

Microsoft Office 97/Visual Basic Programmer's Guide Page 287 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Set cnn = OpenConnection("", dbDriverNoPrompt, False, strConnect)
cnn.Execute "DELETE FROM sales WHERE qty = 100", dbRunAsync
cnn.Close

When you run a query asynchronously, you can use the StillExecuting
property to determine if the query has completed. If the value of the
StillExecuting property is True, the query has not yet completed. If you want
to cancel an asynchronous query, use the Cancel method, as shown in the
following example.

Function CancelAsynchQuery() As Boolean
Dim wrk As Workspace, cnn As Connection, strConnect As String
Dim errObj As Error

On Error GoTo Err_CancelAsynchQuery
Set wrk = DBEngine.CreateWorkspace("ODBCDirect", "Admin", "",
strConnect = "ODBC;DSN=Pubs;UID=SA;PWD=;DATABASE=Pubs"
Set cnn = wrk.OpenConnection("", dbDriverNoPrompt, False, str

' Start transaction in order to roll back if needed.
wrk.BeginTrans
cnn.Execute "DELETE FROM sales WHERE qty = 100", dbRunAsync

' Perform other operations.
.
.
.

' If query is still running, cancel and roll back.
If cnn.StillExecuting Then

cnn.Cancel
wrk.Rollback

' If query is complete, commit transaction.
Else

wrk.CommitTrans
End If
CancelAsynchQuery = True

Exit_CancelAsynchQuery:
cnn.Close
wrk.Close
Exit Function

Err_CancelAsynchQuery:
For Each errObj In Errors

Debug.Print errObj.Number, errObj.Description
Next errObj
CancelAsynchQuery = False
Resume Exit_CancelAsynchQuery

End Function

You can use the StillExecuting property and the Cancel method with
QueryDef, Connection, and Recordset objects.

A Connection object can support only one asynchronous operation at a time.
Also, you can't perform another DAO operation, such as recordset manipulation,
on a Connection object while an asynchronous query runs on the same
Connection object. After an asynchronous query is complete, you can then
begin running another asynchronous query on the same Connection object.

Microsoft Office 97/Visual Basic Programmer's Guide Page 288 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

You must first test the value of the StillExecuting property to determine
whether you can start the next asynchronous operation. To run multiple
asynchronous queries at the same time, you must create separate Connection
objects and run each asynchronous query on its own Connection object.

In most cases, you'll want to run an asynchronous query as part of a
transaction. Be aware, however, that if you call the CommitTrans method
while the asynchronous query is still running, your code will pause at the
CommitTrans method until the query finishes. For this reason, it is more
efficient to periodically check the StillExecuting property and continue to
perform other work while the query runs. Once the StillExecuting property
returns False, you can then call the CommitTrans method. This prevents your
code from pausing at the CommitTrans method.

Note If you cancel an action query that is not part of a transaction, the query
updates records up to the point where you called the Cancel method. The
operation will be partially complete and will not be rolled back. For this reason,
you should use the Cancel method only within the scope of a transaction.
Additionally, if you start an asynchronous query in a procedure and the
procedure exits before the query has completed, the query will continue to run.

To improve performance when you're retrieving data from an ODBC data source,
you can cache records locally. A cache is a space in local memory that holds the
data most recently retrieved from the server. If you're performing repeated
operations on a set of data, caching that data makes those operations faster
because you don't have to retrieve the data from the server each time you need
it.

In ODBCDirect queries, use the CacheSize property of the QueryDef object to
specify the number of records to cache. The default cache size is 100 records.
The following example shows how to reset the cache size to 200 records.

Sub SetCacheSize()
Dim

wrk As Workspace, qdf As QueryDef, rst As Recordset
Dim cnn As Connection, strConnect As String

Set wrk = CreateWorkspace("ODBCDirect", "Admin", "", dbUseODB
Set cnn = OpenConnection("", dbDriverNoPrompt, False, strConn
strConnect = "ODBC;DSN=Pubs;UID=SA;PWD=;DATABASE=Pubs"
Set qdf = cnn.CreateQueryDef("tempquery")
qdf.SQL = "SELECT * FROM roysched"
qdf.CacheSize = 40
Set rst = qdf.OpenRecordset()
' Perform some operations on recordset.
rst.Close
cnn.Close

End Sub

The Parameter Object and the Parameters Collection

The Parameter object in an ODBCDirect workspace is similar to the Parameter
object in a Microsoft Jet workspace, with a few differences. In an ODBCDirect
workspace, you can change the setting of the Type property, which is readonly
in a Microsoft Jet workspace. You can also use the Direction property to
indicate whether a parameter is an input parameter, an output parameter, or

Microsoft Office 97/Visual Basic Programmer's Guide Page 289 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

both, or the return value from the procedure. The following example specifies
parameters for a query in an ODBCDirect workspace.

Function RunStoredProc() As Boolean
Dim wrk As Workspace
Dim qdf As QueryDef, rst As Recordset, fld As Field
Dim cnn As Connection, strConnect As String, strSQL As String

Set wrk = CreateWorkspace("ODBCDirect", "sa", "", dbUseODBC)
strConnect = "ODBC;DSN=Pubs;UID=sa;PWD=;DATABASE=Pubs"
Set cnn = wrk.OpenConnection("", dbDriverNoPrompt, False, str

strSQL = "CREATE PROCEDURE tamram @lolimit money AS " _
& "SELECT pub_id, type, title_id, price " _
& "FROM titles WHERE price >@lolimit"

cnn.Execute strSQL

Set qdf = cnn.CreateQueryDef("RunStoredProc")
qdf.SQL = "{ call tamram (?) }"
qdf.Parameters(0).Value = CCur(10)
Set rst = qdf.OpenRecordset()
Do Until rst.EOF

For Each fld In rst.Fields
Debug.Print fld.Name, fld.Value

Next fld
rst.MoveNext

Loop
End Function

The Recordset Object and the Recordsets Collection

The Recordset object represents the records that result from running a query
on a Connection object or a Database object in an ODBCDirect workspace.
The Recordsets collection contains all currently open Recordset objects on a
Connection object or a Database object. The following table shows the
relationship between the Recordset object and the Recordsets collection and
other objects and collections in an ODBCDirect workspace.

The types of Recordset objects supported in an ODBCDirect workspace include
the dynasettype, snapshottype, forwardonlytype, and dynamictype Recordset
objects. For more information on all of these Recordset objects except the
dynamictype Recordset object, see "TableType Recordset Objects," "Dynaset-
Type Recordset Objects," "SnapshotType Recordset Objects," "ForwardOnlyType
Recordset Objects" earlier in this chapter. The following section describes
dynamictype Recordset objects.

DynamicType Recordset Objects

Object or collection Is contained by Contains

Recordset object Recordsets collection Field objects

Properties collection

Recordsets collection Connection object

Database object

Recordset objects

Microsoft Office 97/Visual Basic Programmer's Guide Page 290 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

An additional type of Recordset object, the dynamictype Recordset object, is
available in ODBCDirect workspaces. Dynamictype Recordset objects behave
like dynasettype Recordset objects, but they are updated dynamically as other
users make modifications to the underlying tables. To create a dynamictype
Recordset object, specify the dbOpenDynamic constant for the type
argument of the OpenRecordset method.

Dynamictype Recordset objects are available only if you're using an ODBC
driver that supplies its own cursors. Because not all ODBC drivers supply their
own cursors, you need to determine whether yours does before you try to open
a dynamictype Recordset object. If your ODBC driver doesn't supply its own
cursors, then you should open a snapshottype or forwardonlytype Recordset
object instead. For more information on cursors, see "Using Cursors in
ODBCDirect Workspaces" later in this chapter.

The advantage of using a dynamictype Recordset object is that the recordset
will immediately reflect any changes to the data, including added or deleted
records. For example, if you open a dynamictype Recordset object and another
user edits a record in one of the underlying tables, that change will be reflected
in the Recordset you opened. In order to do this, however, DAO must
constantly requery the data source, which may slow performance considerably.
Therefore, avoid using dynamictype Recordset objects except in situations
where it's crucial to have the most uptodate data at all times.

Opening Recordset Objects Asynchronously

In addition to running queries asynchronously, you can open Recordset objects
asynchronously. To do so, specify the dbRunAsync constant for the options
argument of the OpenRecordset method. You can then use the Cancel
method and the StillExecuting property directly on the Recordset object. For
example, if you open a Recordset object asynchronously, and it takes a long
time to open because more records are returned than expected, you can give
users the option of canceling the operation in order to specify more restrictive
criteria that returns fewer records.

If you cancel an OpenRecordset method, the Recordset object becomes
invalid and you must reopen it to retrieve a valid Recordset object.

Because moving to the last record in a recordset can take a long time, the
MoveLast method of a Recordset object supports asynchronous operation. To
perform an asynchronous MoveLast operation, use the dbRunAsync constant
with the MoveLast method. Be sure to check the StillExecuting property to
determine when this operation is complete.

The Field Object and the Fields Collection

In an ODBCDirect workspace, the Field object represents a field in a QueryDef
object or a Recordset object. When you're performing batch updates, you can
use the Value, VisibleValue, and OriginalValue properties of a Field object to
verify successful completion of a batch update. For more information, see "Using
Batch Optimistic Updating" in the following section.

Microsoft Office 97/Visual Basic Programmer's Guide Page 291 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Using ODBCDirect

The following sections explain how to perform some common operations in an
ODBCDirect workspace: using batch optimistic updating, working with cursors,
and working with stored procedures.

Using Batch Optimistic Updating

In many client/server applications, optimistic updates occur on a recordbyrecord
basis. This usually happens with the following series of events:

1. A user edits a record.

2. The user tries to save the record.

3. The server attempts to place a lock on that record, and if successful, the
record is updated. Otherwise, a lock violation is handled by the
application.

4. The user moves to another record and the entire process is repeated.

Although this process works well for many applications, it is often more efficient
to have the user edit multiple records that are cached locally and then submit
these records to the server in a single batch for updating. This process is called
batch optimistic updating.

To use batch optimistic updating

1. Create an ODBCDirect workspace.

2. Set the DefaultCursorDriver property of the workspace to
dbUseClientBatchCursor.

3. Open a Connection or Database object from the ODBCDirect workspace.

4. Use the OpenRecordset method on the Connection or Database object
to open a Recordset and specify the dbOptimisticBatch constant in the
lockedits argument.

5. Perform any edits to the Recordset object. All edits are cached locally.

6. When you are ready to update the data source, call the Update method
on the Recordset object, specifying dbUpdateBatch for the type
argument.

Note If you attempt a batch update while a record in that Recordset object is
being edited by the user, the record being edited will automatically be updated
before the batch update begins.

The following example illustrates how to use batch optimistic updating.

Microsoft Office 97/Visual Basic Programmer's Guide Page 292 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Function RunInBatch()
Dim wrk As Workspace, cnn As Connection, rst As Recordset
Dim strConnect As String

' Create ODBCDirect workspace.
Set wrk = DBEngine.CreateWorkspace("ODBCDirect", "Admin", "",
' Set default cursor driver to dbUseClientBatchCursor.
wrk.DefaultCursorDriver = dbUseClientBatchCursor
' Create connect string.
strConnect = "ODBC;DSN=Pubs;DATABASE=Pubs;UID=sa;PWD=;"
' Open connection.
Set cnn = wrk.OpenConnection("", dbDriverNoPrompt, False, str
' Open recordset on connection.
Set rst = _

 cnn.OpenRecordset("SELECT * FROM sales", dbOpenDynaset, 0, dbOp

' Change all records in local recordset.
While Not rst.EOF

rst.Edit
rst!qty = rst!qty + 1
rst.Update
rst.MoveNext

Wend

' Update all records in data source.
rst.Update dbUpdateBatch

End Function

If multiple records have been edited locally, and you want to update the current
record before you perform the batch update, you can call the Update method
and specify the dbUpdateCurrentRecord constant for the type argument. This
writes the current record to the data source without writing any other batch
updates. This is illustrated in the following example.

' Edit and update first record.
' Only first record is written back to data source.
rst.MoveFirst
rst.Edit
rst!qty = rst!qty + 2
rst.Update dbUpdateCurrentRecord

' Update remaining records in data source.
rst.Update dbUpdateBatch

Handling Collisions

When you attempt to update a group of records in a single batch operation, it is
possible that other users are editing one or more records you are trying to
update, causing a collision. A collision occurs when a batch update attempts to
update a record at the same time another user is updating the record.

To handle collisions, examine the BatchCollisions property on the Recordset
object. The BatchCollisions property returns an array that stores bookmarks
pointing to records in the Recordset object on which a collision occurred. Each
time a collision occurs during a batch update, a bookmark for the record is
added to the array returned by the BatchCollisions property. You can then
move to each of these bookmarks and examine the following properties of the

Microsoft Office 97/Visual Basic Programmer's Guide Page 293 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Field object of the current record.

After examining these properties, you can choose one of the following options:

� You can force the current value in your Recordset object into the
database, overwriting the field's original value. To do this, call the
Update method and specify True for the force argument.

� You can change the current value in your Recordset object to the original
value and force the change into the database.

Caution Calling the Update method and specifying the dbUpdateBatch
constant for the type argument and True for the force argument forces all
your changes into the data source and overwrites any changes that other
users made to the records. For this reason, it is safer to call the Update
method without specifying the force argument, and then resolve collisions
individually by using the array returned by the BatchCollisions property
along with the Value, OriginalValue, and VisibleValue properties.

The following example shows how to use the array returned by the
BatchCollisions property to force all changes made to a local Recordset
object into the database.

Function BatchForceChanges()
Dim rst As Recordset, cnn As Connection, varCollision As Vari

' Open recordset for batch optimistic updating.
Set rst = _

 cnn.OpenRecordset("SELECT * FROM sales", dbOpenDynaset, 0, dbOp
' Change all records in local recordset.
While Not rst.EOF

rst.Edit
rst!qty = rst!qty + 1
rst.Update
rst.MoveNext

Wend
rst.Update dbUpdateBatch

' Check for collisions and force all changes to recordset
' into database one record at a time.

Property Description

Value The current value of the field in your
Recordset object. This corresponds to the
value of the field after the Update method was
called.

OriginalValue The value of the field in your Recordset object
before the Update method was called.

VisibleValue The value of the field as it is stored in the
database.

Microsoft Office 97/Visual Basic Programmer's Guide Page 294 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

For j = 0 to rst.BatchCollisionCount - 1
varCollision = rst.BatchCollisions(j)
rst.BookMark = varCollision
rst.Update dbUpdateCurrentRecord, True

Next j
End Function

In the preceding example, modifications to the Recordset object are written
back to the database one record at a time. In the following example, all records
are saved in a batch instead of writing one record at a time.

' Open recordset.
Set rst = _
 cnn.OpenRecordset("SELECT * FROM sales", dbOpenDynaset, 0, dbOptim
' Change all records in local recordset.
While Not rst.EOF

rst.Edit
rst!qty = rst!qty + 1
rst.Update
rst.MoveNext

Wend
rst.Update dbUpdateBatch, True

Using Cursors in ODBCDirect Workspaces

A cursor indicates the current record position in a result set. Most types of
cursors contain a representation of the data in the data source, and are not
updatable. Keysets are cursors that contain actual data, and are updatable.

You work with a cursor through the DAO Recordset object. When you open a
Recordset object through DAO, ODBCDirect creates the corresponding cursor.
Each type of Recordset object, except for the tabletype Recordset object,
corresponds to a different type of cursor.

Characteristics of Cursors

You can use cursors to work with sets of data on an ODBC data source. Cursors
can:

� Represent some or all records in a single table.

� Represent some or all records in a multipletable join.

� Represent no records.

� Be readonly or updatable at either the cursor or the field level.

� Be fully scrollable, meaning that you can move forward and backward
through the records, or they can be forwardonly scrolling.

� Exist on either the client or the server.

Microsoft Office 97/Visual Basic Programmer's Guide Page 295 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

ClientSide Cursors vs. ServerSide Cursors

A cursor requires temporary resources to hold its data. These resources can be
in the form of RAM, a paging file such as the virtual memory feature of Microsoft
Windows, or temporary files or databases. If these resources are stored on the
client machine, the cursor is called a clientside cursor. With this type of cursor,
the server sends the data that the cursor represents across the network to the
client, along with the data required by the cursor itself. The client manages the
temporary resources needed by the cursor.

Some server database engines, such as Microsoft SQL Server version 6.0,
support an additional type of cursor known as serverside cursors. With this
cursor type, the server manages the result set with resources located on the
server itself. The server returns only the requested data to the client over the
network. Using this type of cursor can result in significant performance
improvements compared to clientside cursors, especially in situations where
excessive network traffic or inadequate network bandwidth is a problem.
However, because RAM and disk space resources are needed at the server, you
must plan accordingly and ensure that your server hardware is capable of
managing all cursors requested by clients.

Choosing a Cursor Type

When you open a Recordset object on a nonODBC data source, you can specify
a constant for the type argument of the OpenRecordset method that
determines what type of recordset is opened. When you open a Recordset
object on an ODBC data source, you use this same argument to specify the type
of cursor that the Recordset object represents. Each type of cursor corresponds
to a type of recordset. The following table shows the four constants you can use
for the type argument, the type of Recordset object that is created on a non-
ODBC data source, and the type of cursor that is created on an ODBC data
source.

For more information about ODBC cursors, see the ODBC 3.0 Programmer's
Reference.

Note Tabletype Recordset objects aren't supported in ODBCDirect workspaces,
so they have no corresponding cursor.

The DefaultCursorDriver property of a Workspace object specifies where
ODBCDirect creates the cursor — on the client or on the server. You can set the
DefaultCursorDriver property to any of the constants listed in the following
table.

Constant Recordset type Cursor type

dbOpenDynamic Dynamic-type Dynamic

dbOpenDynaset Dynaset-type Keyset

dbOpenSnapshot Snapshot-type Static

dbOpenForwardOnly Forward-only-type Forward-only scrolling (this
is the default)

Microsoft Office 97/Visual Basic Programmer's Guide Page 296 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Record Locking

When you open a Recordset object, you can also specify the type of record
locking you want to use by setting the lockedits argument of the
OpenRecordset method to the appropriate constant. The following table lists
the five constants you can use for the lockedits argument of the
OpenRecordset method, and describes the ODBC cursor lock type to which
they correspond.

Some combinations of cursors and lock types will not work together. For
example, with Microsoft SQL Server version 6.0 cursors, if you specify the
dbOpenSnapshot constant for the type argument of the OpenRecordset

Constant Description

dbUseODBCCursor Use clientside cursors. Clientside cursors give
better performance for small result sets, but
degrade quickly for larger result sets.

dbUseServerCursor Use serverside cursors. For most large
operations, serverside cursors provide better
performance, but may cause more network
traffic. Not all ODBC data sources support
serverside cursors.

dbUseDefaultCursor Use serverside cursors if the server supports
them; otherwise, use clientside cursors.

dbUseClientBatchCursor Use client batch cursors. Required for batch
updates.

dbUseNoCursor Open all Recordset objects as forwardonly-
type, readonly, with a rowset size of 1.

Constant ODBC cursor lock type

dbOptimistic Uses optimistic locking to determine how
changes are made to the Recordset object in
a multiuser environment. The page containing
the record that is being edited is locked only
while the record is being updated by the
Update method.

DbPessimistic Uses pessimistic locking to determine how
changes are made to the Recordset object in
a multiuser environment. The page containing
the record that is being edited is locked as
soon as you use the Edit method.

DbOptimisticValue Uses optimistic concurrency based on record
values.

DbOptimisticBatch Uses batch optimistic updating.

DbReadOnly Default for ODBCDirect workspaces. Prevents
users from making changes to the data in the
Recordset object.

Microsoft Office 97/Visual Basic Programmer's Guide Page 297 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

method, you must specify the dbReadOnly constant for the lockedits
argument. Static cursors do not support the other types of record locking. Which
combinations work together depends on the cursor driver. For specific
information about compatible lock types, refer to your cursor driver
documentation.

Your cursor driver can handle different combinations of cursor types and lock
types in different ways. In some cases, it may return an error if it does not
handle a specific combination. In other cases, it may switch to the nearest
possible combination that it supports. If an error occurs, DAO places the error
information in the Errors collection.

Cursor Limitations

In an ODBCDirect workspace, the default recordset is a readonly, forwardonly-
type Recordset object. Therefore, if you create the default Recordset object
by opening it without specifying a value for the type argument, you won't be
able to edit data on the server. If you want to edit data on the server, you need
to explicitly specify a lock type other than dbReadOnly for the lockedits
argument of the OpenRecordset method.

Because you can't open a tabletype Recordset object in an ODBCDirect
workspace, you can't use the Index property or the Seek method to retrieve
data. Also, recordsets opened against ODBC data sources do not support any of
the Find methods: FindFirst, FindNext, FindPrevious, and FindLast. In a
client/server environment, it's more efficient to fetch only the data that you
need, rather than retrieving more records than you need and then searching
through those records for the data that you want. Therefore, design your
queries to return only the records that you need.

Retrieving Multiple Result Sets

Any SQL statement can include multiple SELECT statements or stored
procedures that invoke one or more SELECT statements. Each SELECT
statement generates a result set that must be processed by your code or
discarded before the resources are released and the next result set is made
available. Because you don't necessarily know how many results sets will be
generated by a stored procedure, your code must be prepared to process an
unknown number of result sets. Note that when a stored procedure returns
multiple result sets, none of the result sets can be updated.

You can use either clientside cursors or serverside cursors to retrieve multiple
result sets. If you use clientside cursors, multiple result sets are returned no
matter what type of Recordset object you open. If you use serverside cursors
to retrieve multiple result sets, you must open a forwardonlytype Recordset
object.

To retrieve multiple results sets

1. Set the workspace's DefaultCursorDriver property to
dbUseServerCursor to specify serverside cursors.

2. Create a QueryDef object and set its SQL property to a valid SQL string
that returns multiple Recordset objects.

Microsoft Office 97/Visual Basic Programmer's Guide Page 298 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

3. Set the CacheSize property of the QueryDef object to 1 to request that
the server sends you one record at a time. When you retrieve records in
this way, you don't actually utilize the cursor.

4. Open a Recordset object on the QueryDef object you just created.
Specify dbOpenForwardOnly for the type argument of the
OpenRecordset method.

5. Use the NextRecordset method to access the next Recordset object in
the group of Recordset objects returned by the server. This discards the
current Recordset object and replaces it with the next Recordset object
specified in your query's SQL statement. If there are no more Recordset
objects in the group of Recordset objects, then the return value of the
NextRecordset method will be False and the current Recordset object
will be empty.

The following example prints the values of each field for each record in each
result set.

Function GetMultipleResults()
Dim wrk As Workspace, rst As Recordset, cnn As Connection, qd
Dim fld As Field, strSQL As String, strConnect As String, fDo

' Create ODBCDirect workspace.
Set wrk = DBEngine.CreateWorkspace("ODBCDirect", "Admin", "",
' Create connect string.
strConnect = "ODBC;DSN=Pubs;DATABASE=Pubs;UID=sa;PWD=;"
' Open connection.
Set cnn = wrk.OpenConnection("", dbDriverNoPrompt, False, str
' Create SQL statement.
strSQL = "SELECT au_lname, au_fname FROM Authors; SELECT titl
' Set default cursor driver.
wrk.DefaultCursorDriver = dbUseServerCursor

' Open recordset.
Set qdf = cnn.CreateQueryDef("", strSQL)
qdf.CacheSize = 1
' Open recordset on QueryDef.
Set rst = qdf.OpenRecordset(dbOpenForwardOnly)

Do Until fDone = True
' Print values for each field in each record of recor
While Not rst.EOF

For Each fld In rst.Fields
Debug.Print fld.Value

Next fld
rst.MoveNext

Wend
fDone = Not rst.NextRecordset()

Loop
rst.Close
cnn.Close
wrk.Close

End Function

Working with Stored Procedures

Microsoft Office 97/Visual Basic Programmer's Guide Page 299 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

You can use ODBCDirect QueryDef objects to run stored procedures.
ODBCDirect QueryDef objects support stored procedures that have both input
parameters and return values. Input parameters are the parameter values
supplied to the procedure at run time. The procedure's return value is the value
that it returns when it has finished running. For example, a stored procedure
may return the number of records that have been affected.

The following example creates a stored procedure named GetEmps on the
server.

strSQL = "CREATE PROCEDURE GetEmps AS "
strSQL = strSQL & "SELECT * FROM EMPLOYEE;"
cnn.Execute strSQL

If there is already a stored procedure named GetEmps on the server, you can
use the DROP statement to delete it before creating a new one, as shown in the
following example.

strSQL = "DROP PROCEDURE GetEmps;"
cnn.Execute strSQL

You can run the stored procedure by using the Execute method of a
Connection object. To retrieve the return value, create a QueryDef object and
open a recordset on it.

Set qdf = cnn.CreateQueryDef("qry", "{ call GetEmps() }")
Set rst = qdf.OpenRecordset

Use the Parameter object to work with parameters. The Direction property of
a Parameter object tells DAO how the parameter will function. The ODBC
driver tries to determine the parameter direction, but the Direction property is
read/write, so you can set it if you need to. The following example creates a
simple stored procedure with an input parameter and a return value. It then
runs the procedure and retrieves the return value.

' Create stored procedure on the server.
strSQL = "CREATE PROCEDURE UpdateEmps (@invar int) AS RETURN @invar;"
cnn.Execute strSQL

' Create QueryDef object to run stored procedure.
Set qdf = cnn.CreateQueryDef("qry", "{ ? = call UpdateEmps(?) }")

' Handle parameters.
qdf.Parameters(0).Direction = dbParamReturnValue
qdf.Parameters(1) = 10
qdf.Execute

' Get return value.
var = qdf.Parameters(0).Value

Microsoft Office 97/Visual Basic Programmer's Guide Page 300 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Contents

� Designing Custom Dialog Boxes
� Using Custom Dialog Boxes
� Working with Controls on a Document, Sheet, or Slide
� Working with Controls Programmatically

Microsoft Excel 97, Word 97, and PowerPoint 97 share powerful new tools for
creating custom dialog boxes. Because these applications use the same dialog
box tools in the Visual Basic Editor, you only have to learn how to create custom
dialog boxes one way for all three applications, and you can share these dialog
boxes across applications.

After you've created a custom dialog box, you can add ActiveX controls
(previously referred to as OLE controls) to it. You can also place ActiveX controls
directly on a document, worksheet, or slide. To determine how custom dialog
boxes and controls respond to specific user actions — for example, clicking a
control or changing its value — you write event procedures that will run
whenever a specific event occurs.

Note For information about designing forms in Microsoft Access, see Building
Applications with Microsoft Access 97, available in Microsoft Access 97 and
Microsoft Office 97, Developer Edition. An online version of Building Applications
with Microsoft Access 97 is available in the Value Pack on CDROM in Microsoft
Access 97 and Microsoft Office 97, Professional Edition. For information about
designing forms in Microsoft Outlook 97, see Building Microsoft Outlook 97
Applications by Peter Krebs, available from Microsoft Press.

Designing Custom Dialog Boxes

To create a custom dialog box, you must create a form (also called a UserForm)
to contain controls, add controls to the form, set properties for the controls, and
write code that responds to form and control events.

Note When you're in the Visual Basic Editor designing your dialog box, you're
in design mode. In design mode, you can edit controls. Controls don't respond
to events in design mode. When you run your dialog box — that is, when you
display it the way users will see it — you're in run mode. Controls do respond to
events in run mode.

Creating a New Dialog Box

Every custom dialog box in your project is a form, or UserForm. A new
UserForm contains a title bar and an empty area in which you can place
controls.

C H A P T E R 12 Microsoft Office 97/Visual Basic Programmer's Guide

ActiveX Controls and Dialog Boxes

Microsoft Office 97/Visual Basic Programmer's Guide Page 301 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

To create a new UserForm

� On the Insert menu in the Visual Basic Editor, click UserForm.

A new, empty UserForm is displayed. Use the Properties window to set
properties for the UserForm — that is, to change the name, behavior, and
appearance of the form. For example, to change the caption on a form, set the
Caption property. For more information about the Properties window and the
Visual Basic Editor, see Chapter 1, "Programming Basics."

Adding Controls to a Custom Dialog Box

Use the Toolbox to add controls to a custom dialog box. Click Toolbox on the
View menu to display the Toolbox if it's not already visible. To see the name of
a particular control in the Toolbox, position the mouse pointer over that
control.

To add a control to a custom dialog box, find the control you want to add in the
Toolbox, drag the control onto the form, and then drag one or more of the
control's adjustment handles until the control is the size and shape you want.
For more information about a specific type of control, add the control to a form,
select the control, and then press F1.

Note Dragging a control (or a number of "grouped" controls) from a custom
dialog box back to the Toolbox creates a template of that control, which you can
reuse at any time. This is a useful feature for implementing a standard "look
and feel" for your applications.

After you've added controls to the form, use the commands on the Format
menu or the buttons on the UserForm toolbar in the Visual Basic Editor to
adjust the alignment and spacing of the controls. Use the Tab Order dialog box
(View menu) to set the tab order of the controls on the form.

Tip The Visual Basic Editor sets the TabIndex property for the controls to
determine the tab order. If you want to prevent users from tabbing to a
particular control, you can set the TabStop property to False for that control.
To do this, rightclick the control, and then click Properties to display the
Properties window.

Practice 1: Design and run a custom dialog box

1. Create a new UserForm.

2. On the UserForm, insert a Frame control.

3. In the Frame control, insert three OptionButton controls.

4. Click Run Sub/UserForm on the Run menu.

The custom dialog box is displayed. The option buttons should work when
you click them. Because you first created a Frame control to contain the
option buttons, clicking one option button automatically turns all the other

Microsoft Office 97/Visual Basic Programmer's Guide Page 302 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

ones off in that control.

5. Click the Close button on the UserForm title bar to exit run mode and
return to design mode.

Setting Control and Dialog Box Properties at Design
Time

You can set some control properties at design time (before any macros are run).
In design mode, rightclick a control and then click Properties on the shortcut
menu to display the Properties window. Property names are listed in the left-
hand column in the window, and property values are listed in the righthand
column. You set a property value by typing the new value in the space to the
right of the property name.

Tip You can view the properties of an object either sorted alphabetically (on
the Alphabetic tab in the Properties window) or sorted into functional
categories (on the Categorized tab).

Practice 2: Set control properties in design mode

1. Create a new UserForm.

2. Add an Image control, a CommandButton control, and a few other
controls to the UserForm.

3. Rightclick the image you added, click Properties on the shortcut menu to
display the Properties window for the image, and then find Picture (for
the Picture property) in the list of properties. To browse for files that you
can set this property to, click the ellipsis button (…) in the space to the
right of Picture. Select a file in the Load Picture dialog box, and then
click OK.

4. Click the CommandButton you added; the list of properties in the
Properties window changes to the properties of command buttons. Find
Caption and type Send Order in the space to the right to set the value of
the Caption property. The caption is the text that appears on the face of
the command button.

5. In the list of properties for the command button, type CmdSendOrder in
the space to the right of (Name). This sets the name you use to refer to
the button in your code.

6. In the list of properties for the command button, type Click here to send
order in the space to the right of ControlTipText. When the user
positions the mouse pointer over this command button in run mode, this
tip will appear, indicating what the button does.

7. In the list of properties for the command button, type s in the space to
the right of Accelerator. Notice that the "S" in the "Send Order" caption
on the command button is now underlined. (If you choose as an
accelerator key a letter that isn't in the control caption, there will by no
visual indication that the control has an accelerator key.) While any dialog

Microsoft Office 97/Visual Basic Programmer's Guide Page 303 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

box is running, the user can press ALT+the accelerator key (in this case,
"S") to move the focus directly to the control.

8. On the Run menu, click Run Sub/UserForm, and then move the focus
to a control other than the Send Order button. You can press ALT+S to
move the focus to the Send Order button.

9. Click the Close button on the UserForm title bar to exit run mode and
return to design mode.

Tip To set a property for several controls at the same time, select the controls
and then change the value for that property in the Properties window.

Practice 3: Set UserForm properties in design mode

1. Click anywhere in a UserForm except on a control to select the UserForm.

2. In the Properties window, type Book Order Form in the space to the
right of Caption.

3. In the space to the right of BackColor in the list of properties, click the
arrow to see a set of values from which to choose. Click the Palette tab,
and then click the color you want to set as the background color for the
dialog box.

4. To see the results of your new settings, run the dialog box. Click the
Close button on the title bar to return to design mode.

Creating Tabs in Dialog Boxes

If you need for a single dialog box to handle a large number of controls that can
be sorted into categories, you can create a dialog box with two or more tabs
and then place different sets of related controls on different tabs in the dialog
box. To create a dialog box with tabs, add a MultiPage control to the dialog
box and then add controls to each tab (or page). To add, remove, rename, or
move a page in a MultiPage control, rightclick one of the pages in design
mode, and then click a command on the shortcut menu.

Note Don't confuse MultiPage controls with TabStrip controls. The pages (or
tabs) of a MultiPage control contain a unique set of controls that you add during
design time to each page. Using a TabStrip control, which can look like a series
of tabs or buttons, you can modify the values of a shared set of controls at run
time. For information about using TabStrip controls, see "Displaying a Custom
Dialog Box" later in this chapter.

Writing Code to Respond to Dialog Box and Control
Events

Each form or control recognizes a predefined set of events, which can be
triggered either by the user or by the system. For example, a command button
recognizes the Click event that occurs when the user clicks that button, and a
form recognizes the Initialize event that occurs when the form is loaded. To
specify how a form or control should respond to events, you write event

Microsoft Office 97/Visual Basic Programmer's Guide Page 304 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

procedures.

To write an event procedure for a form or control, open the Code window by
doubleclicking the UserForm or control object, and then click the event name in
the Procedure box (in the upperright corner of the window. Event procedures
include the name of the UserForm or control. For example, the name of the
Click event procedure for the command button Command1 is Command1_Click.
For more information about writing event procedures, see Chapter 1,
"Programming Basics."

Practice 4: Write and run an event procedure for a command button

1. Create a new UserForm, and then add a CommandButton, a CheckBox,
and a ComboBox control to it.

2. Click the command button. In the Properties window, change the code
name of the command button by typing CmdSendOrder in the space to
the right of (Name).

3. Doubleclick the command button to view the code associated with it. By
default, the Click event procedure will be displayed in the Code window.

4. Add a statement to the CmdSendOrder_Click procedure to display a
simple message box (use the following example).

Private Sub CommandButton1_Click()
 MsgBox "I've been clicked once"
End Sub

5. Run the dialog box to see the results. The CmdSendOrder_Click event
procedure will run every time this command button is clicked in run mode.
Because you haven't written code for the other controls yet, they don't
respond to your mouse actions. Click the Close button on the title bar to
return to design mode.

To see all the events that command buttons recognize, click the down arrow
next to the Procedure box in the Code window. Events that already have
procedures written for them appear bold. Click an event name in the list to
display its associated procedure.

To see the events for a different control on the same UserForm or for the
UserForm itself, click the object name in the Object box in the Code window,
and then click the arrow next to the Procedure box.

Tip If you add code to an event procedure before you change the code name
of the control, your code will still have its previous code name in any procedures
it's used in. For example, assume that you add code to the Click event for the
Command1 button and then rename the control as Command2. When you
doubleclick Command2, you won't see any code in the Click event procedure;
You'll need to move code from Command1_Click to Command2_Click. To
simplify development, it's a good idea to name your controls with the names
you really want for them before you write any code.

Microsoft Office 97/Visual Basic Programmer's Guide Page 305 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Using Custom Dialog Boxes

To exchange information with the user by way of a custom dialog box, you must
display the dialog box to the user, respond to user actions in the dialog box,
and, when the dialog box is closed, get information that the user entered in it.

Displaying a Custom Dialog Box

When you want to display a custom dialog box to yourself for testing purposes,
you click Run Sub/UserForm on the Run menu in the Visual Basic Editor.
However, when you want to display a dialog box to a user, you use the Show
method. The following example displays the dialog box named "UserForm1."

UserForm1.Show

Getting and Setting Properties at Run Time

If you want to set default values for controls in a custom dialog box, modify
controls while the dialog box is visible, and have access to the information that
a user enters in the dialog box, you must set and read the values of control
properties at run time.

Setting Initial Values for Controls

To set the initial value, or default value, that a control will have every time the
dialog box that contains it is displayed, add code to the Initialize event
procedure for the UserForm that contains the control that sets the value for the
control. When you display the dialog box, the Initialize event will be triggered,
and the control's value will be initialized.

Practice 5: Write and run an Initialize event procedure for a UserForm

1. Create a new UserForm, and then add a TextBox, a ListBox, and a
CheckBox control to it.

2. Click the text box. In the Properties window, type txtCustomerName in
the space to the right of (Name) to set the code name of the text box.
Then change the code name of the list box to "lstRegions," change the
code name of the check box to "chkSendExpress," and change the code
name of the UserForm itself to "frmPhoneOrders."

3. Doubleclick the UserForm to display the Code window. With UserForm
selected in the Object box of the Code window, select Initialize in the
Procedure box. Complete the UserForm_Initialize procedure, as shown in
the following example.

Private Sub UserForm_Initialize()
 With frmPhoneOrders
 .txtCustomerName.Text = "Grant Clarridge" 'Sets default
 .chkSendExpress.Value = True 'Checks check box by defau
 With .lstRegions

Microsoft Office 97/Visual Basic Programmer's Guide Page 306 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

 .AddItem "North" 'These lines populate the li
 .AddItem "South"
 .AddItem "East"
 .AddItem "West"
 .ListIndex = 3 'Selects the 4th item in the
 End With
 End With
End Sub

Note Although collections in the Microsoft Excel, Word, and PowerPoint
object models are 1based, arrays and collections associated with forms
are 0based. Therefore, to select the fourth item in the list in the preceding
example, you must set the ListIndex property to 3.

4. Run the dialog box to see the results. Click the Close button on the title
bar to return to design mode.

If you want to set the initial value (default value) for a control but you don't
want that to be the initial value every time you call the dialog box, you can use
Visual Basic code to set the control's value before you display the dialog box
that contains the control. The following example uses the AddItem method to
add data to a list box, sets the value of a text box, and displays the dialog box
that contains these controls.

Private Sub GetUserName()
With UserForm1

.lstRegions.AddItem "North"

.lstRegions.AddItem "South"

.lstRegions.AddItem "East"

.lstRegions.AddItem "West"

.txtSalesPersonID.Text = "00000"

.Show
' ...

End With
End Sub

Setting Values to Modify Controls While a Dialog Box Is
Running

You can set properties and apply methods of controls and the UserForm while a
dialog box is running. The following example sets the text (the Text property)
of TextBox1 to "Hello."

Use Me to Simplify Event Procedure Code

In the preceding example, you can use the keyword Me instead of the
code name of the UserForm. That is, you can replace the statement With
frmPhoneOrders with the statement With Me. The Me keyword used in
code for a UserForm or a control on the UserForm represents the
UserForm itself. This technique lets you use long, meaningful names for
controls while still making code easy to write. Many examples in this
chapter demonstrate how to use Me this way.

Microsoft Office 97/Visual Basic Programmer's Guide Page 307 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

TextBox1.Text = "Hello"

By setting control properties and applying control methods at run time, you can
make changes in a running dialog box in response to a choice the user makes.
For example, if you want a particular control to be available only while a
particular check box is selected, you can write code that enables the control
whenever the user selects the check box and disables it whenever the user
clears the check box.

Enabling a Control

You can use the Enabled property of a control to prevent the user from making
changes to the control unless a specified condition is met. For example, a
common use of the Enabled property is in an event procedure for a text box
that enables the OK button only when the user has entered a value that
conforms to a standard pattern.

Setting the Enabled property is often used to make a set of option buttons
available only while the user has a particular check box selected, as
demonstrated in the following practice. This code is included in the Change
event procedure for the check box, and it runs whenever the state of the check
box (checked or cleared) changes.

Practice 6: Enable and disable controls during run time

1. Create a new UserForm, and then add a CheckBox control to it. Add a
Frame control to the UserForm, and then place three OptionButton
controls within the frame.

2. Doubleclick the check box to switch to the Code window. With
CheckBox1 selected in the Object box in the Code window, click
Change in the Procedure box. Complete the CheckBox1_Change
procedure as shown in the following example.

Private Sub CheckBox1_Change()
 With Me
 If .CheckBox1.Value = True Then
 .OptionButton1.Enabled = False
 .OptionButton2.Enabled = False
 .OptionButton3.Enabled = False
 Else
 .OptionButton1.Enabled = True
 .OptionButton2.Enabled = True
 .OptionButton3.Enabled = True
 End If
 End With
End Sub

3. Run the dialog box; select and clear the check box to see how changing
the state of the check box enables or disables the three option buttons.
Click the Close button on the title bar to return to design mode.

Microsoft Office 97/Visual Basic Programmer's Guide Page 308 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Setting the Focus to a Control

You can set the focus to a control in a dialog box by using the SetFocus
method of that control (the control with the focus is the one that responds to
keyboard input from the user).

Practice 7: Set the control focus during run time

1. Create a new UserForm, and then add a CheckBox, an Image, and a few
other controls to it. In the Properties window, set the Picture property
of the image to display a graphic.

2. Doubleclick the image to switch to the Code window. With Image1
selected in the Object box in the Code window, select Click in the
Procedure box. Complete the Image1_Click procedure as shown in the
following example.

Private Sub Image1_Click()
 Me.CheckBox1.SetFocus
End Sub

3. Run the dialog box. Give the focus to a control other than CheckBox1.
When you click Image1, CheckBox1 is given the focus (a dotted rectangle
surrounds the check box, and you can press the SPACEBAR to select or
clear the check box). Click the Close button on the title bar to return to
design mode.

Displaying and Hiding Parts of a Dialog Box

You can set properties or apply methods of the UserForm itself while a dialog
box is running. A common use for this is to expand a UserForm to reveal
additional options when the user clicks a command button.

Practice 8: Resize a UserForm during run time

1. Create a new UserForm. The value of its Height property (the number to
the right of Height in the Properties window) should be 180.

2. Add a CommandButton control at the top of the UserForm, and then add
a CheckBox control to the bottom of the UserForm (the Top property for
the check box should be at least 120).

3. Doubleclick the UserForm to switch to the Code window. With UserForm
selected in the Object box of the Code window, click Initialize in the
Procedure box. Complete the UserForm_Initialize procedure as shown in
the following example. Setting the height of the dialog box to 120 points
when it's initially displayed specifies that the control at the bottom of the
dialog box will be hidden when the dialog box opens.

Private Sub UserForm_Initialize()
 Me.Height = 120
End Sub

Microsoft Office 97/Visual Basic Programmer's Guide Page 309 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

4. In the Object box in the Code window, click CommandButton1, and
then select Click in the Procedure box. Complete the Image1_Click
procedure as shown in the following example. The example toggles the
value of the Height property of the UserForm between 120 points (the
initial value) and 180 points.

Private Sub OptionButton1_Click()
 With Me
 .Height = 300 - .Height
 End With
End Sub

5. Run the dialog box. To hide or display the bottom section of the dialog
box that contains the check box, click the command button. Click the
Close button on the title bar to return to design mode.

Browsing Data with a TabStrip Control

You can use a TabStrip control to view different sets of information in the same
set of controls in a dialog box. For example, if you want to use one area of a
dialog box to display contact information pertaining to a group of individuals,
you can create a TabStrip control and then add controls to contain the name,
address, and phone number of each person in the group. You can then add a
"tab" to the TabStrip control for each member of the group. After doing this,
you can write code that, when you click a particular tab, updates the controls to
display data about the person identified on that tab.

Tip To add, remove, rename, or move a tab in a tab strip, rightclick the tab
strip in design mode, and then click an item on the shortcut menu.

The following example changes the value of TextBox1 each time a different tab
of TabStrip1 is clicked. The index number of the tab that was clicked is passed
to the event procedure.

Private Sub TabStrip1_Click(ByVal Index As Long)
If Index = 0 Then
 Me.TextBox1.Text = "7710 Betty Jane Lane"
ElseIf
Index = 1 Then
 Me.TextBox1.Text = "9523 15th Ave NE"
End If
End Sub

Keep in mind that formsrelated collections are 0based, which means that the
index of the first member in any collection is 0 (zero).

Note Don't confuse TabStrip controls with MultiPage controls. Unlike a
TabStrip control, the pages (or tabs) of a MultiPage control contain a unique set
of controls that you add during design time to each page. For information about
using MultiPage controls, see "Creating Tabs in Dialog Boxes" earlier in this
chapter.

Microsoft Office 97/Visual Basic Programmer's Guide Page 310 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Data Validation

There are times when you'll want to make sure that the user only enters a value
of a specific type in a particular control. For example, if you're using a TextBox
control, which allows the user to enter any data type, and if your code expects
to get a value of type Integer back from the text box, you should write code
that verifies that the user has entered a valid integer before the dialog box
closes. To verify that the user has entered the appropriate type of data in a
control, you can check the value of the control either when the control loses the
focus or when the dialog box is closed. The following example will prevent the
user from moving the focus away from the txtCustAge text box without first
entering a valid number.

Private Sub txtCustAge_Exit(ByVal Cancel As MSForms.ReturnBoolean)
 If Not IsNumeric(txtCustAge.Text) Then
 MsgBox "Please enter numeric value for the customer's age."
 Cancel = True
 End If
End Sub

Notice that you set the Cancel argument of a control's Exit event procedure to
True to prevent the control from losing the focus.

To verify data before a dialog box closes, include code to check the contents of
one or more controls in the dialog box in the same routine that unloads the
dialog box. If a control contains invalid data, use an Exit Sub statement to exit
the procedure before the Unload statement can be executed. The following
example runs whenever the user clicks the cmdOK command button.This
procedure prevents the user from closing the dialog box by using the cmdOK
button until the txtCustAge text box contains a number.

Private Sub cmdOK_Click()
 If Not IsNumeric(txtCustAge.Text) Then
 MsgBox "Please enter numeric value for the customer's age."
 txtCustAge.SetFocus
 Exit Sub
 End If
 custAge = txtCustAge.Text
 Unload Me
End Sub

Getting Values When the Dialog Box Closes

Any data that a user enters in a dialog box is lost when the dialog box is closed.
If you return the values of controls in a UserForm after the form has been
unloaded, you get the initial values for the controls rather than any values the
user may have entered.

If you want to save the data entered in a dialog box by a user, you can do so by
saving the information to modulelevel variables while the dialog box is still
running. The following example displays a dialog box and saves the data that's
been entered in it.

Microsoft Office 97/Visual Basic Programmer's Guide Page 311 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

'Code in module to declare public variables
Public strRegion As String
Public intSalesPersonID As Integer
Public blnCancelled As Boolean

'Code in form
Private Sub cmdCancel_Click()

Module1.blnCancelled = True
Unload Me

End Sub

Private Sub cmdOK_Click()
'Save data
intSalesPersonID = txtSalesPersonID.Text
strRegion = lstRegions.List(lstRegions.ListIndex)
Module1.blnCancelled = False
Unload Me

End Sub

Private Sub UserForm_Initialize()
Module1.blnCancelled = True

End Sub

'Code in module to display form
Sub LaunchSalesPersonForm()

frmSalesPeople.Show
If blnCancelled = True Then

MsgBox "Operation Cancelled!", vbExclamation
Else

MsgBox "The Salesperson's ID is: " &
intSalesPersonID & _
"The Region is: " & strRegion

End If
End Sub

Closing a Custom Dialog Box

Dialog boxes are always displayed as modal. That is, the user must close the
dialog box before returning to the document. Use the Unload statement to
unload a UserForm when the user indicates that he or she wants to close the
dialog box. Typically, you provide a command button in the dialog box that the
user can click to close it.

The following example inserts the name of a dialog box into a Word document
and then unloads the form. The code appears in the Click event for an OK
button in the dialog box.

Private Sub cmdOK_Click()
 ActiveDocument.Content.InsertAfter txtUserName.Text
 Unload UserForm1
End Sub

Using the Same Dialog Box in Different Applications

Microsoft Excel, Word, and PowerPoint share features for creating custom dialog

Microsoft Office 97/Visual Basic Programmer's Guide Page 312 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

boxes. You can create a UserForm in one of these applications and share it with
the other applications.

To share a UserForm with another application

1. In the Visual Basic Editor for the application in which you created the
UserForm, rightclick the UserForm in the Project Explorer, and then click
Export File on the shortcut menu.

2. Choose a name to export the UserForm as, and then click Save. The
UserForm is saved with the .frm file name extension.

3. In the Visual Basic Editor for the application in which you want to use the
UserForm, rightclick the project where you want to store the form in the
Project Explorer, and then click Import File on the shortcut menu.

4. Select the name you gave the dialog box when you saved it, and then
click Open.

Note Not every UserForm that runs as it's supposed to in one application will
run correctly when it's imported into another application. For example, if you
import a UserForm that contains Wordspecific code into Microsoft Excel, the
UserForm won't run correctly.

Working with Controls on a Document, Sheet,
or Slide

Just as you can add ActiveX controls to custom dialog boxes, you can add
controls directly to a document, sheet, or slide to make it interactive. For
example, you might add text boxes, list boxes, option buttons, and other
controls to a document to turn it into an online form; you might add a button to
a sheet that runs a commonly used macro; or you might add buttons and other
controls to the slides in a presentation to help the user navigate the slide show.

Although working with a control on a document, sheet, or slide is very similar to
working with a control in a custom dialog box, there are a few differences.
Among those differences are the following:

� On a document, sheet, or slide, you add controls by using the Control
Toolbox, not the Toolbox. To display the Control Toolbox, point to
Toolbars on the View menu, and then click Control Toolbox.

� When you're designing a custom dialog box, you run a dialog box to
switch to run mode, where your controls will respond to events, and you
close a dialog box and return to the Visual Basic Editor to switch back to
design mode, where you can work with the controls without having them
respond to events. When you're working with controls on documents or in
workbooks, you click the Exit Design Mode button on the Visual Basic
toolbar to switch to run mode, and you click the Design Mode button to
switch back to design mode. In PowerPoint, you run a slide show to switch
to run mode, and you switch to any editing view to switch back to design
mode.

Microsoft Office 97/Visual Basic Programmer's Guide Page 313 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

� A control may not have the same set of events on a document, sheet, or
slide as it does on a UserForm. For example, a command button on a
UserForm has an Exit event, whereas a command button on a document
doesn't.

Using ActiveX Controls on Word Documents

You can add controls to documents to create interactive documents, such as
online forms. Keep the following points in mind when you're working with
controls on documents:

� You can add ActiveX controls to either the text layer or the drawing layer.
To add a control to the text layer, hold down the SHIFT key while you click
the control on the Control Toolbox toolbar that you want to add to the
document. To add a control to the drawing layer, click the control on the
Control Toolbox toolbar without holding down the SHIFT key.

� A control you add to the text layer is an InlineShape object to which you
gain access programmatically through the InlineShapes collection. A
control you add to the drawing layer is a Shape object to which you gain
access programmatically through the Shapes collection.

� Controls in the text layer are treated like characters and are positioned as
characters within a line of text. For example, if you place controls in the
cells within a table, the controls will be automatically moved when you
resize any columns in the table.

� You cannot drag controls from the Control Toolbox onto a Word
document. When you press SHIFT and click a control to add it to the text
layer, the control is automatically added at the insertion point. When you
click a control to add it to the drawing layer, the position of the control is
based on the position of the insertion point, but may not match it. If you
add multiple controls to the drawing layer without moving the insertion
point, the controls will all be placed in the same position, one on top of
the other, so that you only see the last one you added.

� In design mode, ActiveX controls in the drawing layer are visible only in
page layout view or online layout view.

� ActiveX controls in the drawing layer are always in run mode (so that they
can receive input from a user) in page layout view or online layout view.

� If you want the user to be able to move between controls in an online
form by pressing TAB, add the controls to the text layer, and protect the
form by clicking the Protect Form button on the Forms toolbar.

� If you want to add form fields instead of ActiveX controls to your
document to create an online form, use the Forms toolbar.

Using ActiveX Controls on Microsoft Excel Sheets

Microsoft Office 97/Visual Basic Programmer's Guide Page 314 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

You can add controls to worksheets or chart sheets next to the data the controls
are linked to so that they're easy for the user to find and understand, and so
that using them causes only minimal interruptions during a work session. For
example, you can add to a worksheet a button that runs a procedure that
formats the active cell when the button is clicked.

Keep the following points in mind when you're working with controls on sheets:

� In addition to the standard properties available for ActiveX controls, you
can use the following properties with ActiveX controls in Microsoft Excel:
BottomRightCell, LinkedCell, ListFillRange, Placement, PrintObject,
TopLeftCell, and ZOrder.

You can set and return these properties by using the ActiveX control
name. The following example scrolls through the workbook window until
CommandButton1 is in the upperleft corner of the window.

Set t = Sheet1.CommandButton1.TopLeftCell
With ActiveWindow

.ScrollRow = t.Row

.ScrollColumn = t.Column
End With

� Some Microsoft Excel Visual Basic methods and properties are disabled
when an ActiveX control is activated. For instance, you cannot use the
Sort method when a control is active; thus, the following example will fail
in a Click event procedure (because the control is still active after the user
clicks it).

Private Sub CommandButton1_Click
Range("a1:a10").Sort Key1:=Range("a1")

End Sub

You can work around this problem by activating some other element on
the sheet before you use the property or method that failed. For instance,
the following example sorts the range.

Private Sub CommandButton1_Click
Range("a1").Activate
Range("a1:a10").Sort Key1:=Range("a1")
CommandButton1.Activate

End Sub

� Controls in a Microsoft Excel workbook embedded in a document in
another application won't work if the user doubleclicks the workbook to
edit it. The controls will work if the user rightclicks the workbook and then
clicks the Open command on the shortcut menu.

� When you save a Microsoft Excel 97 workbook by using the Microsoft Excel
5.0/95 Workbook file format, all ActiveX control information is lost.

Microsoft Office 97/Visual Basic Programmer's Guide Page 315 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

� The Me keyword in an event procedure for an ActiveX control on a sheet
refers to the sheet, not to the control.

Using ActiveX Controls on PowerPoint Slides

Adding controls to your PowerPoint slides provides a sophisticated way for you
to exchange information with the user while a slide show is running. For
example, you can use controls on slides so that viewers of a show designed to
be run in a kiosk have a way to choose options and then run a custom show
based on the viewer's choices.

Keep the following points in mind when you're working with controls on slides:

� A control on a slide is in design mode except when the slide show is
running.

� If you want a particular control to appear on all the slides in a
presentation, add the control to the slide master.

� The Me keyword in an event procedure for a control on a slide refers to
the slide. The Me keyword in an event procedure for a control on a master
refers to the master, not to the slide that's being displayed when the
control event is triggered.

� Writing event code for controls on slides is very similar to writing event
code for controls in dialog boxes. The following example (the Click event
procedure for the command button named "cmdChangeColor") sets the
background for the slide the button is on.

Private Sub cmdChangeColor_Click()
 With Me
 .FollowMasterBackground = Not .FollowMasterBackground
 .Background.Fill.PresetGradient msoGradientHorizontal, 1,
 End With
End Sub

� You may want to use controls to provide your slide show with navigation
tools that are more complex than those built into PowerPoint. For
instance, if you add two buttons named "cmdBack" and "cmdForward" to
the slide master and write the code in the following example for them, all
slides based on the master (and set to show master background graphics)
will have these professionallooking navigation buttons, which will be
active during a slide show.

Private Sub cmdBack_Click()
 Me.Parent.SlideShowWindow.View.Previous
End Sub

Sub cmdForward_Click()
 Me.Parent.SlideShowWindow.View.Next
End Sub

Microsoft Office 97/Visual Basic Programmer's Guide Page 316 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

� To work with all the ActiveX controls on a particular slide without affecting
the other shapes on the slide, you can construct a ShapeRange collection
that contains only controls. You can then either apply properties and
methods to the entire collection or iterate through the collection to work
with each control individually. The following example aligns all the
controls on slide one in the active presentation and arranges them
vertically.

With ActivePresentation.Slides(1).Shapes
 numShapes = .Count
 If numShapes > 1 Then
 numControls = 0
 ReDim ctrlArray(1 To numShapes)
 For i = 1 To numShapes
 If .Item(i).Type = msoOLEControlObject Then
 numControls = numControls + 1
 ctrlArray(numControls) = .Item(i).Name
 End If
 Next
 If numControls > 1 Then
 ReDim Preserve ctrlArray(1 To numControls)
 Set ctrlRange = .Range(ctrlArray)
 ctrlRange.Distribute msoDistributeVertically, True
 ctrlRange.Align msoAlignLefts, True
 End If
 End If
End With

Working with Controls Programmatically

To gain access to a control programmatically, you can either refer to the control
by its code name or get to it through the collection it belongs to. (The code
name of a control is the value of the (Name) property for that control in the
Properties window.)

The following example sets the caption for the control named
"CommandButton1."

CommandButton1.Caption = "Run"

Note that when you use a control name outside the class module for the
document, sheet, or slide that contains the control, you must qualify the control
name with the code name of the document, sheet, or slide. The following
example changes the caption on the control named "CommandButton1" on the
Sheet1.

Sheet1.CommandButton1.Caption = "Run"

You can also gain access to ActiveX controls through the Shapes, OLEObjects,
or InlineShapes collection. ActiveX controls you add to the drawing layer of a
document, sheet, or slide are contained in Shape objects and can be
programmatically controlled through the Shapes collection. In Microsoft Excel,

Microsoft Office 97/Visual Basic Programmer's Guide Page 317 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

ActiveX controls are also contained in OLEObject objects that can be controlled
through the OLEObjects collection. In Word, ActiveX controls you add to the
text layer of a document are contained in InlineShape objects and can be
controlled through the InlineShapes collection.

Important You use the name of the Shape object that contains a particular
control, not the code name of the control, to gain access to the control
programmatically through a collection. In Microsoft Excel and PowerPoint, the
name of the object that contains a control matches the code name of the control
by default. This isn't true in Word, however; the name of the object that
contains a control (which will be something like "Control 1" by default) is
unrelated to the code name of a control (which will be something like
"CommandButton1" by default). To change the code name of a control, select
the control and change the value to the right of (Name) in the Properties
window. To change the name of the Shape object, OLEObject object, or other
object that contains the control, change the value of its Name property.

The following example adds a command button to worksheet one.

Worksheets(1).OLEObjects.Add "Forms.CommandButton.1", _
Left:=10, Top:=10, Height:=20, Width:=100

The following example sets the Left property for CommandButton1 on
worksheet one.

Worksheets(1).OLEObjects("CommandButton1").Left = 10

The following example sets the caption for CommandButton1.

Worksheets(1).OLEObjects("CommandButton1").Object.Caption = "Run"

The following example adds a check box to the active document's text layer.

ActiveDocument.InlineShapes.AddOLEControl ClassType:="Forms.CheckBox.

The following example sets the Width property for the first shape in the active
document's text layer.

ActiveDocument.InlineShapes(1).Width = 200

The following example sets the Value property for the first shape in the active
document's text layer.

ActiveDocument.InlineShapes(1).OLEFormat.Object.Value = True

The following example adds a combo box to the active document's drawing
layer.

ActiveDocument.Shapes.AddOLEControl ClassType:="Forms.ComboBox.1"

Microsoft Office 97/Visual Basic Programmer's Guide Page 318 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

The following example sets the Left property for a combo box contained in
Control 1 in the active document's drawing layer.

ActiveDocument.Shapes("Control 1").Left = 100

The following example sets the Text property for a combo box contained in
Control 1 in the active document's drawing layer.

ActiveDocument.Shapes("Control 1").OLEFormat.Object.Text = "Reed"

The following example adds a command button to slide one in the active
presentation.

ActivePresentation.Slides(1).Shapes.AddOLEObject Left:=100, Top:=100,
 Width:=150, Height:=50, ClassName:="Forms.CommandButton.1"

The following example sets the Left property for the control contained in
CommandButton1 on slide one in the active presentation.

ActivePresentation.Slides(1).Shapes("CommandButton1").Left = 100

The following example sets the Caption property for the control contained in
CommandButton1 on slide one in the active presentation.

ActivePresentation.Slides(1).Shapes("CommandButton1") _
 .OLEFormat.Object.Caption = "Run"

Contents
� General Optimization Strategies
� Strategies for Optimizing Microsoft Excel
� Strategies for Optimizing Microsoft Word

Visual Basic is an extremely flexible programming language: there are often
several ways to accomplish the same task. When you first start to program, or
when you write a macro that will run only once, you'll probably be satisfied with
simply "getting the job done." When you write a macro that will be used many
times — such as a macro that prepares a weekly report, or an Auto_Open macro
that runs every time you open a workbook or document — or when you write a
macro that will be used by other people, you'll probably want to optimize the
macro so that it requires less time and memory to run. The techniques
described in this chapter will help you write smaller, faster macros.

Note For information about optimizing Visual Basic in Microsoft Access, see

C H A P T E R 13 Microsoft Office 97/Visual Basic Programmer's Guide

Optimizing for Size and Speed

Microsoft Office 97/Visual Basic Programmer's Guide Page 319 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Building Applications with Microsoft Access 97, available in Microsoft Access 97
and Microsoft Office 97, Developer Edition. An online version of Building
Applications with Microsoft Access 97 is available in the Value Pack on CDROM in
Microsoft Access 97 and Microsoft Office 97, Professional Edition.

General Optimization Strategies

Use the following techniques for optimizing your Microsoft Excel, Word, and
PowerPoint code.

Note Most of the example code in this section was written in Microsoft Excel,
but the principles also apply to Word and PowerPoint. For information about
optimizing Visual Basic in Microsoft Access, see Building Applications with
Microsoft Access 97.

Minimizing OLE References

Every Visual Basic method or property call requires one or more calls through
the OLE IDispatch interface. These OLE calls take time. Minimizing the number
of method or property calls is one of the best ways to make your macro run
faster.

Because you use a period (a "dot") to separate the parts of a Visual Basic
statement, an easy way to keep track of the number of method and property
calls is to "count the dots." For example, the following statement contains three
dots.

Workbooks(1).Sheets(1).Range("c5").Value = 10

The following statement contains only one dot.

ActiveWindow.Left = 200

The examples in the following sections demonstrate how reducing the number
of dots creates fasterrunning code.

Using Object Variables

If you find that you're using the same object reference over and over, you can
set a variable for the object and subsequently use the variable in place of the
object reference. This way, you'll only need to call the object accessor once,
when you set the variable, instead of calling it each time you want to refer to
the object. The following example calls the Workbooks method and the
Sheets method twice each.

Workbooks(1).Sheets(1).Range("c5").Value = 10
Workbooks(1).Sheets(1).Range("d10").Value = 12

You can optimize the preceding example by setting an object variable. The
following example calls the Workbooks method and the Sheets method only

Microsoft Office 97/Visual Basic Programmer's Guide Page 320 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

once each.

Set sheet = Workbooks(1).Sheets(1)
sheet.Range("c5").Value = 10
sheet.Range("d10").Value = 12

Using the With Statement

You can use the With statement to eliminate the need for repetitive object
references, without setting an explicit object variable. The example in the
preceding section could be rewritten as follows, using the With statement. The
following example calls the Workbooks method and the Sheets method only
once each.

With Workbooks(1).Sheets(1)
.Range("c5").Value = 10
.Range("d10").Value = 12

End With

Using the With statement eliminates the need for the intermediate variable
used in the example in the preceding section; otherwise, this code is the same
as in that example.

Using a For Each...Next Loop

Using a For Each...Next loop to iterate through a collection or array is faster
than using an indexed loop. In most cases, using a For Each...Next loop is also
more convenient and makes your macro smaller and easier to read and debug.

The following example is slow because it sets the row variable thisRow by
calling r.Rows(i) each time through the loop.

Set r = Worksheets(1).Range("a1:a200")
For i = 1 To r.Rows.Count

Set thisRow = r.Rows(i)
If thisRow.Cells(1, 1).Value < 0 Then

thisRow.Font.Color = RGB(255, 0, 0)
End If

Next

The following example is faster and smaller than the preceding one because the
For Each...Next loop keeps track of the row count and position.

For Each thisRow In Worksheets(1).Range("a1:a200").Rows
If thisRow.Cells(1, 1).Value < 0 Then

thisRow.Font.Color = RGB(255, 0, 0)
End If

Next

Keeping Properties and Methods Outside Loops

Your code can get variable values faster than it can get property values.

Microsoft Office 97/Visual Basic Programmer's Guide Page 321 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Therefore, if your code gets the value of a property within a loop, it will run
faster if you assign the property to a variable outside the loop and use the
variable instead of the property inside the loop. The following example is slow
because it gets the Value property each time through the loop.

For iLoop = 2 To 200
Cells(iLoop, 1).Value = Cells(1, 1).Value

Next

The following example is faster than the preceding one because the value of one
property has been assigned to the variable cv before the loop begins. Visual
Basic must therefore access only one property value (instead of two) each time
through the loop.

cv = Cells(1, 1).Value
For i Loop = 2 To 200

Cells(iLoop, 1).Value = cv
Next

If you're using an object accessor inside a loop, try to move it outside the loop.
The following example calls the ActiveWorkbook property, the Sheets
property, and the Cells property each time through the loop.

For c = 1 To 1000
ActiveWorkbook.Sheets(1).Cells(c, 1) = c

Next

Rewriting this example by using the With statement moves the
ActiveWorkbook property and Sheets property calls outside the loop. You
could also move these calls outside the loop by using an object variable.

With ActiveWorkbook.Sheets(1)
For c = 1 To 1000

.Cells(c, 1) = c
Next

End With

Using Collection Index Numbers

With most object accessor methods and properties, you can specify an
individual object in a collection either by name or by number. Using the object's
index number is usually faster. If you use the object's name, Visual Basic must
resolve the name to the index value; if you use the index value, you avoid this
extra step.

There are, however, some significant advantages to specifying an object in a
collection by name. One advantage is that using an object's name makes your
code easier to read and debug. In addition, specifying an object by name is
safer than specifying it by index number, because the index value for an object
can change while your code is running. For example, a menu's index number
represents the menu's position on the menu bar; therefore, the index number
can change if menus are added to or deleted from the menu bar. This is one

Microsoft Office 97/Visual Basic Programmer's Guide Page 322 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

instance where faster isn't necessarily better. You should use this technique
only when you're sure that the index value cannot change.

Minimizing Object Activation and Selection

Most of the time, your code can operate on objects without activating them. If
you learned Visual Basic programming by using the macro recorder, you're
probably accustomed to activating or selecting an object before you do anything
to that object. The macro recorder does this because it must follow your
keystrokes as you activate windows and select their contents. However, you can
usually write much simpler and faster Visual Basic code that produces the same
results without activating or selecting each object before working with it. For
example, filling cells C1:C20 on Sheet5 with random numbers (using the
AutoFill method) produces the macro recorder output shown in the following
example.

Sheets("Sheet5").Select
Range("C1").Select
ActiveCell.FormulaR1C1 = "=RAND()"
Selection.AutoFill Destination:=Range("C1:C20"), Type:=xlFillDefault
Range("C1:C20").Select

All of the Select method calls are unnecessary. You can use the With
statement to write code that operates directly on the worksheet and the range,
as shown in the following example.

With Sheets("Sheet5")
.Range("C1").FormulaR1C1 = "=RAND()"
.Range("C1").AutoFill Destination:=.Range("C1:C20"), _

Type:=xlFillDefault
End With

Keep in mind that the macro recorder records exactly what you do — it cannot
optimize anything on its own. The recorded macro uses the AutoFill method
because that's how the user entered the random numbers. This isn't the most
efficient way to fill a range with random numbers. You can do the same thing
with a single line, as shown in the following example.

Sheets("Sheet5").Range("C1:C20").Formula = "=RAND()"

When you optimize recorded code, think about what you're trying to do with the
macro. Some of the operations you can perform in the user interface (such as
dragging a formula from a single cell into a range) are recorded as methods
(such as AutoFill) that can be eliminated in the optimized code because there's
a faster way to perform the same operation in Visual Basic.

Removing Unnecessary Recorded Expressions

Another reason why the macro recorder produces inefficient code is that it
cannot tell which options you've changed in a dialog box. The recorder therefore
explicitly sets all available options when you close the dialog box. For example,
selecting cells B2:B14 and then changing the font style to bold in the Format
Cells dialog box produces the recorded macro shown in the following example.

Microsoft Office 97/Visual Basic Programmer's Guide Page 323 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Range("B2:B14").Select
With Selection.Font

.Name = "Arial"

.FontStyle = "Bold"

.Size = 10

.Strikethrough = False

.Superscript = False

.Subscript = False

.OutlineFont = False

.Shadow = False

.Underline = xlNone

.ColorIndex = xlAutomatic
End With

You can set the font style for the specified cell to bold with a single line of code
and without selecting the range, as shown in the following example.

Range("B2:B14").Font.FontStyle = "Bold"

Again, if you think about what you're trying to do with the macro and you look
through the lists of properties and methods that apply to the Font object, you'll
see that you could also write this macro using the Bold property, as shown in
the following example.

Range("B2:B14").Font.Bold = True

You can also experiment with the macro recorder by recording the same
operation performed different ways in the user interface. For example, if you
format a range by using the Bold button on the Standard toolbar, the macro
recorder uses the Bold property.

Minimizing the Use of Variant Variables

Although you may find it convenient to use Variant variables in your code,
Visual Basic requires more time to process a value stored in a Variant variable
than it needs to process a value stored in a variable declared with an explicit
data type. Your code can perform mathematical computations that don't involve
fractional values faster if you use Integer or Long variables rather than
Variant variables. Integer or Long variables are also the best choice for the
index variable in For...Next loops. The speed you gain using explicit variable
types can come at the expense of flexibility. For example, when using explicit
data types, you may encounter cases of overflow that Variant variables handle
automatically.

Using Specific Object Types

References to objects and their methods and properties are resolved either
when your macro is compiled or when it runs. References that are resolved
when the macro is compiled are faster than references that must be resolved
while the macro is running.

If you declare variables and arguments as specific object types (such as Range

Microsoft Office 97/Visual Basic Programmer's Guide Page 324 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

or Worksheet), Visual Basic can resolve references to the properties and
methods of those objects when your macro is compiled. For a list of specific
object types, see the Object Browser.

In addition, you should use fully qualified object references. This eliminates
ambiguity and ensures that the variable has the intended type. A fully qualified
object reference includes the library name, as shown in the following examples.

Dim wb As Excel.Workbook
Dim dc As Word.Document, cb As MSForms.CommandButton

If you declare variables and arguments with the generic Object data type,
Visual Basic may have to resolve references to their properties and methods
when it encounters them at run time, resulting in a significantly slower process.

Using Constants

Using constants in an application makes the application run faster. Constants
are evaluated once and are stored when your code is compiled. Variables can
change, though, so Visual Basic must get the current variable value each time
the macro runs. Constants also make your macros more readable and easier to
maintain. If there are strings or numbers in a macro that don't change, declare
them as constants.

Turning Off Screen Updating

A macro that makes changes to the appearance of a document — such as a
macro that changes the color of every other cell in a large range or that creates
a large number of graphic objects — will run faster when screen updating is
turned off. You won't be able to watch the macro run (the changes will appear
all at once when you turn screen updating back on), but it will run much faster.
You may want to leave screen updating turned on while you write and debug
the macro, and then turn it off before you run the macro.

To turn off screen updating, set the ScreenUpdating property to False, as
shown in the following example.

Application.ScreenUpdating = False

Remember to set the ScreenUpdating property back to True when your macro
finishes running (older versions of Microsoft Excel automatically reset this
property, but Microsoft Excel 97 and Word 97 don't).

Tip You can sometimes achieve the same effect by not activating the object
you're changing. For example, if you create graphic objects on a sheet without
first activating the document, you don't need to turn screen updating off
because the changes won't be visible anyway.

Strategies for Optimizing Microsoft Excel
In addition to the general information discussed in this chapter, you can use the
following techniques to create smaller and faster macros in Microsoft Excel.

Microsoft Office 97/Visual Basic Programmer's Guide Page 325 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Using Worksheet Functions

A Microsoft Excel worksheet function that operates on a range of cells is usually
faster than a Visual Basic macro that accomplishes the same task. For example,
the SUM worksheet function is much faster than Visual Basic code that iterates
a range and adds the values in the range's cells. For example, the following
code runs relatively slowly.

For Each c In Worksheets(1).Range("A1:A200")
totVal = totVal + c.Value

Next

The following code runs faster than the preceding example.

totVal = Application.WorksheetFunction.Sum(Worksheets(1).Range("a1:a2

Function that produce aggregrate results (such as PRODUCT, COUNT, COUNTA,
and COUNTIF) are good candidates for replacing slower Visual Basic code, as
are worksheet functions (such as MATCH and LOOKUP) that can take a range as
an argument.

Using SpecialPurpose Visual Basic Methods

There are also several specialpurpose Visual Basic methods that offer a concise
way to perform a specific operation on a range of cells. Like worksheet
functions, these specialized methods are faster than the generalpurpose Visual
Basic code that accomplishes the same task.

The following example changes the value in each cell in the range A1:A200 in a
relatively slow way.

For Each c In Worksheets(1).Range("a1:a200").Cells
If c.Value = 4 Then c.Value = 4.5

Next

The following example, which uses the Replace method, performs the same
operation much faster.

Worksheets(1).Range("a1:a200").Replace "4", "4.5"

The following example shows a relatively slow way to add a blue oval to each
cell in the range A1:A500 that contains the value 4.

For Each c In Worksheets(1).Range("a1:a500").Cells
If c.Value = 4 Then

With Worksheets(1).Ovals.Add(c.Left, c.Top, c.Width,
.Interior.Pattern = xlNone
.Border.ColorIndex = 5

End With
End If

Microsoft Office 97/Visual Basic Programmer's Guide Page 326 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Next

The following example, which uses the Find and FindNext methods, performs
the same task much faster.

With Worksheets(1).Range("a1:a500")
Set c = .Find(4)
If Not c Is Nothing Then

firstAddress = c.Address
Do

With Worksheets(1).Ovals.Add(c.Left, c.Top, _
c.Width, c.Height)

.Interior.Pattern = xlNone

.Border.ColorIndex = 5
End With
Set c = .FindNext(c)

Loop While Not c Is Nothing And c.Address <> firstAdd
End If

End With

For more information about specialpurpose Visual Basic methods, see the topic
in Help that pertains to the object you're working with, and examine the list of
that object's methods. You can also examine the list of all Visual Basic methods
on the Contents tab in the Help Topics dialog box.

Strategies for Optimizing Microsoft Word

In addition to the general information discussed in this chapter, you can use the
following techniques to create smaller and faster macros in Word.

Using Range Objects

Working with Range objects is faster than working with the Selection object.
You can define and use multiple Range objects, which are invisible to the user.

Using Next and Previous

Whenever possible, use Next and Previous to return the next or previous item
in a collection. For example, using myRange.Next Unit:=wdWord is faster than
indexing the collection of words (myRange.Words(10)).

Avoiding Using the WordBasic Object

Methods of the WordBasic object are slower than methods and properties of
other Visual Basic objects. For example, WordBasic.FileOpen is slower than
Documents.Open.

Executing Builtin Dialog Boxes

A With statement is an efficient way to set many properties of a single object.
Another technique for setting multiple properties is to set the properties of a
builtin dialog box and then execute the dialog box. Executing a builtin dialog

Microsoft Office 97/Visual Basic Programmer's Guide Page 327 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

box is faster than using the With statement because the builtin dialog box
stores the property values and then sets them all at once (using the Execute
method), whereas the With statement sets properties one at a time. The
following example sets a number of paragraph formatting properties by using a
With statement.

With Selection.ParagraphFormat
 .Alignment = wdAlignParagraphCenter
 .KeepWithNext = True
 .LeftIndent = InchesToPoints(0.5)
End With

The following example sets the same properties as the preceding example, but
runs faster because it executes a builtin dialog box.

Set dlg = Dialogs(wdDialogFormatParagraph)
dlg.Alignment = wdAlignParagraphCenter
dlg.KeepWithNext = True
dlg.LeftIndent = "0.5"
dlg.Execute

Contents
� How to Handle Errors
� Designing an Error Handler
� The ErrorHandling Hierarchy
� Testing Error Handling by Generating Errors
� Inline Error Handling
� Centralized Error Handling
� Turning Off Error Handling
� Handling Errors in Referenced Objects
� Approaches to Debugging
� Avoiding Bugs
� Design Time, Run Time, and Break Mode
� Using the Debugging Windows
� Using Break Mode
� Running Selected Portions of Your Application
� Monitoring the Call Stack
� Testing Data and Procedures with the Immediate Window
� Special Debugging Considerations
� Tips for Debugging

No matter how carefully crafted your code, errors can (and probably will) occur.
Ideally, Visual Basic procedures wouldn't need errorhandling code at all.
Unfortunately, sometimes files are mistakenly deleted, disk drives run out of

C H A P T E R 14 Microsoft Office 97/Visual Basic Programmer's Guide

Debugging and Error Handling

Microsoft Office 97/Visual Basic Programmer's Guide Page 328 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

space, or network drives disconnect unexpectedly. Such possibilities can cause
runtime errors in your code. To handle these errors, you need to add error-
handling code to your procedures.

Sometimes errors can also occur within your code; this type of error is
commonly referred to as a bug. Minor bugs can be frustrating or inconvenient.
More severe bugs can cause an application to stop responding to commands,
possibly requiring the user to restart the application, losing whatever work
hasn't been saved.

The process of locating and fixing bugs in your application is known as
debugging. Visual Basic provides several tools to help analyze how your
application operates. These debugging tools are particularly useful in locating
the source of bugs, but you can also use the tools to experiment with changes
to your application or to learn how other applications work.

This chapter shows how to use the debugging tools included in Visual Basic and
explains how to handle runtime errors — errors that occur while your code is
running and that result from attempts to complete an invalid operation.

Note The information in this chapter applies to the Visual Basic Editor in
Microsoft Excel 97, Word 97, and PowerPoint 97. For information about
debugging Visual Basic code and handling errors in Microsoft Access 97, see
Building Applications with Microsoft Access 97, available in Microsoft Access 97
and Microsoft Office 97, Developer Edition. An online version of Building
Applications with Microsoft Access 97 is available in the Value Pack on CDROM in
Microsoft Access 97 and Microsoft Office 97, Professional Edition.

How to Handle Errors

Ideally, Visual Basic procedures wouldn't need errorhandling code at all. Reality
dictates that hardware problems or unanticipated actions by the user can cause
runtime errors that halt your code, and there's usually nothing the user can do
to resume running the application. Other errors might not interrupt code, but
they can cause it to act unpredictably.

For example, the following procedure returns True if the specified file exists and
False if it does not, but doesn't contain errorhandling code.

Function FileExists (filename) As Boolean
FileExists = (Dir(filename) <> "")

End Function

The Dir function returns the first file matching the specified file name (given
with or without wildcard characters, drive name, or path); it returns a zero-
length string if no matching file is found.

The code appears to cover either of the possible outcomes of the Dir call.
However, if the drive letter specified in the argument is not a valid drive, the
error "Device unavailable" occurs. If the specified drive is a floppy disk drive,
this function will work correctly only if a disk is in the drive and the drive door is
closed. If not, Visual Basic presents the error "Disk not ready" and halts

Microsoft Office 97/Visual Basic Programmer's Guide Page 329 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

execution of your code.

To avoid this situation, you can use the errorhandling features in Visual Basic to
intercept errors and take corrective action. (Intercepting an error is also known
as trapping an error.) When an error occurs, Visual Basic sets the various
properties of the error object, Err, such as an error number, a description, and
so on. You can use the Err object and its properties in an errorhandling routine
so that your application can respond intelligently to an error situation.

For example, device problems, such as an invalid drive or an empty floppy disk
drive, could be handled by the following example.

Function FileExists (filename) As Boolean
Dim Msg As String
' Turn on error trapping so error handler responds
' if any error is detected.
On Error GoTo CheckError

FileExists = (Dir(filename) <> "")
' Avoid executing error handler if no error occurs.
Exit Function

CheckError: ' Branch here if error occurs
' Define constants to represent intrinsic Visual Basic error
' codes.
Const mnErrDiskNotReady = 71, mnErrDeviceUnavailable = 68
' vbExclamation, vbOK, vbCancel, vbCritical, and vbOKCancel a
'constants defined in the VBA type library.
If (Err.Number = MnErrDiskNotReady) Then

Msg = "Put a floppy disk in the drive and close the d
' Display message box with an exclamation mark icon a
' OK and Cancel buttons.
If MsgBox(Msg, vbExclamation & vbOKCancel) = vbOK The

Resume
Else

Resume Next
End If

ElseIf Err.Number = MnErrDeviceUnavailable Then
Msg = "This drive or path does not exist: " & filenam
MsgBox Msg, vbExclamation
Resume Next

Else
Msg = "Unexpected error #" & Str(Err.Number) & " occu
& Err.Description
' Display message box with Stop sign icon and OK butt
MsgBox Msg, vbCritical
Stop

End If
Resume

End Function

In this code, the Err object's Number property contains the number associated
with the runtime error that occurred; the Description property contains a short
description of the error.

When Visual Basic generates the error "Disk not ready," this code presents a
message telling the user to choose one of two buttons — OK or Cancel. If the
user chooses OK, the Resume statement returns control to the statement at
which the error occurred and attempts to rerun that statement. This succeeds if
the user has corrected the problem; otherwise, the program returns to the error

Microsoft Office 97/Visual Basic Programmer's Guide Page 330 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

handler.

If the user chooses Cancel, the Resume Next statement returns control to the
statement following the one at which the error occurred (in this case, the Exit
Function statement).

Should the error "Device unavailable" occur, this code presents a message
describing the problem. The Resume Next statement then causes the function
to continue execution at the statement following the one at which the error
occurred.

If an unanticipated error occurs, a short description of the error is displayed and
the code halts at the Stop statement.

The application you create can correct an error or prompt the user to change the
conditions that caused the error. To do this, use techniques such as those
shown in the preceding example. The next section discusses these techniques in
detail.

Designing an Error Handler

An error handler is a routine for trapping and responding to errors in your
application. You'll want to add error handlers to any procedure where you
anticipate the possibility of an error (you should assume that any Visual Basic
statement can produce an error unless you explicitly know otherwise). The
process of designing an error handler involves three steps:

1. Set, or enable, an error trap by telling the application where to branch to
(which errorhandling routine to run) when an error occurs.

The On Error statement enables the trap and directs the application to
the label marking the beginning of the errorhandling routine.

In the preceding example, the FileExists function contains an error-
handling routine named CheckError.

2. Write an errorhandling routine that responds to all errors you can
anticipate. If control actually branches into the trap at some point, the
trap is then said to be active.

The CheckError routine handles the error using an If...Then...Else
statement that responds to the value in the Err object's Number
property, which is a numeric code corresponding to a Visual Basic error. In
the example, if "Disk not ready" is generated, a message prompts the
user to close the drive door. A different message is displayed if the
"Device unavailable" error occurs. If any other error is generated, the
appropriate description is displayed and the program stops.

3. Exit the errorhandling routine.

In the case of the "Disk not ready" error, the Resume statement makes
the code branch back to the statement where the error occurred. Visual
Basic then tries to rerun that statement. If the situation has not changed,

Microsoft Office 97/Visual Basic Programmer's Guide Page 331 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

then another error occurs and execution branches back to the error-
handling routine.

In the case of the "Device unavailable" error, the Resume Next statement
makes the code branch to the statement following the one at which the
error occurred.

Details on how to perform these steps are provided in the remainder of this
topic. Refer to the FileExists function in the preceding example as you read
through these steps.

Setting the Error Trap

An error trap is enabled when Visual Basic runs the On Error statement, which
specifies an error handler. The error trap remains enabled while the procedure
containing it is active — that is, until an Exit Sub, Exit Function, Exit
Property, End Sub, End Function, or End Property statement is run for that
procedure. While only one error trap can be enabled at any one time in any
given procedure, you can create several alternative error traps and enable
different ones at different times. You can also disable an error trap by using a
special case of the On Error statement — On Error GoTo 0.

To set an error trap that jumps to an errorhandling routine, use a On Error
GoTo line statement, where line indicates the label identifying the errorhandling
code. In the FileExists function example, the label is CheckError. (Although the
colon is part of the label, it isn't used in the On Error GoTo line statement.)

Writing an ErrorHandling Routine

The first step in writing an errorhandling routine is adding a line label to mark
the beginning of the errorhandling routine. The line label should have a
descriptive name and must be followed by a colon. A common convention is to
place the errorhandling code at the end of the procedure with an Exit Sub, Exit
Function, or Exit Property statement immediately before the line label. This
allows the procedure to avoid executing the errorhandling code if no error
occurs.

The body of the errorhandling routine contains the code that actually handles
the error, usually in the form of a Select Case or If…Then…Else statement.
You need to determine which errors are likely to occur and provide a course of
action for each, for example, prompting the user to insert a disk in the case of a
"Disk not ready" error. An option should always be provided to handle any
unanticipated errors by using the Else or Case Else clause — in the case of the
FileExists function example, this option warns the user then ends the
application.

The Number property of the Err object contains a numeric code representing
the most recent runtime error. By using the Err object in combination with the
Select Case or If...Then...Else statement, you can take specific action for any
error that occurs.

Exiting an ErrorHandling Routine

Microsoft Office 97/Visual Basic Programmer's Guide Page 332 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

The FileExists function example uses the Resume statement within the error
handler to rerun the statement that originally caused the error, and uses the
Resume Next statement to return execution to the statement following the one
at which the error occurred. There are other ways to exit an errorhandling
routine. Depending on the circumstances, you can do this using any of the
statements shown in the following table.

The Difference Between Resume and Resume Next

The difference between Resume and Resume Next is that Resume continues
running the application from the statement that generated the error (the
statement is rerun), while Resume Next continues running the application
from the statement that follows the one that generated the error. Generally, you
would use Resume whenever the error handler can correct the error, and
Resume Next when the error handler cannot. You can write an error handler so
that the existence of a runtime error is never revealed to the user or to display
error messages and allow the user to enter corrections.

The following example uses error handling to perform "safe" division on its
arguments without revealing errors that might occur. The errors that can occur
when performing division are described in the following table.

Statement Description

Resume [0] Program execution resumes with the statement
that caused the error or the most recently run
call out of the procedure containing the error-
handling routine. Use it to repeat an operation
after correcting the condition that caused the
error.

Resume Next Resumes program execution at the statement
immediately following the one that caused the
error. If the error occurred outside the
procedure that contains the error handler,
execution resumes at the statement
immediately following the call to the procedure
wherein the error occurred, if the called
procedure does not have an enabled error
handler.

Resume line Resumes program execution at the label
specified by line, where line is a line label (or
nonzero line number) that must be in the same
procedure as the error handler.

Err.Raise Number:= number Triggers a run-time error. When this statement
is run within the error-handling routine, Visual
Basic searches the calls list for another error-
handling routine. (The calls list is the chain of
procedures invoked to arrive at the current
point of execution. For more information, see
"The Error-Handling Hierarchy" later in this
chapter.)

Microsoft Office 97/Visual Basic Programmer's Guide Page 333 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

In all three cases, the following example traps these errors and returns Null.

Function Divide (numer, denom) as Variant
Const mnErrDivByZero = 11, mnErrOverFlow = 6, mnErrBadCall =
On Error GoTo MathHandler

Divide = numer / denom
Exit Function

MathHandler:
If Err.Number = MnErrDivByZero Or Err.Number = ErrOverFlow _
Or Err = ErrBadCall Then

Divide = Null ' If error was Division by zero, Over
' or Illegal procedure call, return N

Else
' Display unanticipated error message.
MsgBox "Unanticipated error " & Err.Number & ": " & _
Err.Description, vbExclamation

End If ' In all cases, Resume Next continues
Resume Next ' execution at the Exit Funct

End Function

Resuming Execution at a Specified Line

Resume Next can also be used where an error occurs within a loop, and you
need to restart the operation. Or, you can use Resume line, which returns
control to a specified line label.

The following example illustrates the use of the Resume line statement. A
variation on the FileExists example shown earlier, this function allows the user
to enter a file specification that the function returns if the file exists.

Function VerifyFile As String
Const mnErrBadFileName = 52, mnErrDriveDoorOpen = 71
Const mnErrDeviceUnavailable = 68, mnErrInvalidFileName = 64
Dim strPrompt As String, strMsg As String, strFileSpec As Str
strPrompt = "Enter file specification to check:"

StartHere:
strFileSpec = "*.*" ' Start with a default specif
strMsg = strMsg & vbCRLF & strPrompt
' Let the user modify the default.
strFileSpec = InputBox(strMsg, "File Search", strFileSpec, 10
100)
' Exit if user deletes default.
If strFileSpec = "" Then Exit Function
On Error GoTo Handler

VerifyFile = Dir(FileSpec)

Error Cause

"Division by zero" Numerator is nonzero, but the denominator is
zero.

"Overflow" Both numerator and denominator are zero
(during floating-point division).

"Illegal procedure call" Either the numerator or the denominator is a
nonnumeric value (or can't be considered a
numeric value).

Microsoft Office 97/Visual Basic Programmer's Guide Page 334 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Exit Function
Handler:

Select Case Err.Number ' Analyze error code and load
Case ErrInvalidFileName, ErrBadFileName

strMsg = "Your file specification was invalid
another."

Case MnErrDriveDoorOpen
strMsg = "Close the disk drive door and try a

Case MnErrDeviceUnavailable
strMsg = "The drive you specified was not fou
again."

Case Else
Dim intErrNum As Integer
intErrNum = Err.Number
Err.Clear ' Clear the E
Err.Raise Number:= intErrNum ' Regenerate

End Select
Resume StartHere ' This jumps back to StartHer

' the user can try another fi
End Function

If a file matching the specification is found, the function returns the file name. If
no matching file is found, the function returns a zerolength string. If one of the
anticipated errors occurs, a message is assigned to the strMsg variable and
execution jumps back to the label StartHere. This gives the user another
chance to enter a valid path and file specification.

If the error is unanticipated, the Case Else segment regenerates the error so
that the next error handler in the calls list can trap the error. This is necessary
because if the error wasn't regenerated, the code would continue to run at the
Resume StartHere line. By regenerating the error you are in effect causing the
error to occur again; the new error will be trapped at the next level in the call
stack.

The ErrorHandling Hierarchy

An enabled error handler is one that was activated by executing an On Error
statement and hasn't yet been turned off — either by an On Error GoTo 0
statement or by exiting the procedure where it was enabled. An active error
handler is one in which execution is currently taking place. To be active, an
error handler must first be enabled, but not all enabled error handlers are
active. For example, after a Resume statement, a handler is deactivated but
still enabled.

When an error occurs within a procedure lacking an enabled errorhandling
routine, or within an active errorhandling routine, Visual Basic searches the calls
list for another enabled errorhandling routine. The calls list is the sequence of
calls that leads to the currently executing procedure; it is displayed in the Call
Stack dialog box. You can display the Call Stack dialog box only when in break
mode (when you pause the execution of your application), by clicking Call
Stack on the View menu.

Searching the Calls List

Suppose that the following sequence of calls occurs:

Microsoft Office 97/Visual Basic Programmer's Guide Page 335 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

1. An event procedure calls Procedure A.

2. Procedure A calls Procedure B.

3. Procedure B calls Procedure C.

While Procedure C is executing, the other procedures are pending. If an error
occurs in Procedure C and this procedure doesn't have an enabled error handler,
Visual Basic searches backward through the pending procedures in the calls
list — first Procedure B, then Procedure A, then the initial event procedure (but
no farther) — and runs the first enabled error handler it finds. If it doesn't
encounter an enabled error handler anywhere in the calls list, it presents a
default unexpected error message and halts execution.

If Visual Basic finds an enabled errorhandling routine, execution continues in
that routine as if the error had occurred in the same procedure that contains the
error handler. If a Resume or a Resume Next statement is run in the error-
handling routine, execution continues as shown in the following table.

Notice that the statement run is in the procedure where the errorhandling
procedure is found, not necessarily in the procedure where the error occurred. If
you don't take this into account, your code may perform in ways you don't
intend. To make the code easier to debug, you can simply go into break mode
whenever an error occurs, as explained in the section "Turning Off Error
Handling" later in this chapter.

If the error handler's range of errors doesn't include the error that actually
occurred, an unanticipated error can occur within the procedure with the
enabled error handler. In such a case, the procedure could run endlessly,
especially if the error handler runs a Resume statement. To prevent such
situations, use the Err object's Raise method in a Case Else statement in the
handler. This actually generates an error within the error handler, forcing Visual
Basic to search through the calls list for a handler that can deal with the error.

The effect of the search back through the calls list is hard to predict, because it
depends on whether Resume or Resume Next is run in the handler that

Statement Result

Resume The call to the procedure that Visual Basic just
searched is re-run. In the calls list given
earlier, if Procedure A has an enabled error
handler that includes a Resume statement,
Visual Basic re-runs the call to Procedure B.

Resume Next Execution returns to the statement following
the last statement run in that procedure. This
is the statement following the call to the
procedure that Visual Basic just searched back
through. In the calls list given earlier, if
Procedure A has an enabled error handler that
includes a Resume Next statement, execution
returns to the statement after the call to
Procedure B.

Microsoft Office 97/Visual Basic Programmer's Guide Page 336 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

processes the error successfully. Resume returns control to the most recently
run call out of the procedure containing the error handler. Resume Next
returns control to whatever statement immediately follows the most recently
run call out of the procedure containing the error handler.

For example, in the calls list discussed earlier, if Procedure A has an enabled
error handler and Procedure B and C don't, an error occurring in Procedure C
will be handled by Procedure A's error handler. If that error handler uses a
Resume statement, upon exit, the program continues with a call to Procedure
B. However, if Procedure A's error handler uses a Resume Next statement,
upon exit, the program will continue with whatever statement in Procedure A
follows the call to Procedure B. In both cases the error handler does not return
directly to either the procedure or the statement where the error originally
occurred.

Guidelines for Complex Error Handling

When you write large Visual Basic applications that use multiple modules, the
errorhandling code can get quite complex. Keep these guidelines in mind:

� While you are debugging your code, use the Err object's Raise method to
regenerate the error in all error handlers for cases where no code in the
handler deals with the specific error. This allows your application to try to
correct the error in other errorhandling routines along the calls list. It also
ensures that Visual Basic will display an error message if an error occurs
that your code doesn't handle. When you test your code, this technique
helps you uncover the errors you aren't handling adequately.

� Use the Clear method if you need to explicitly clear the Err object after
handling an error. This is necessary when using inline error handling with
On Error Resume Next. Visual Basic calls the Clear method
automatically whenever it runs any type of Resume statement, Exit Sub,
Exit Function, Exit Property, or any On Error statement.

� If you don't want another procedure in the calls list to trap the error, use
the Stop statement to force your code to terminate. Using Stop lets you
examine the context of the error while refining your code in the
development environment.

� Write a failsafe errorhandling procedure that all your error handlers can
call as a last resort for errors they cannot handle. This failsafe procedure
can perform an orderly termination of your application by unloading forms
and saving data.

Testing Error Handling by Generating Errors

Simulating errors is useful when you are testing your applications, or when you
want to treat a particular condition as being equivalent to a Visual Basic runtime
error. For example, you might be writing a module that uses an object defined
in an external application, and want errors returned from the object to be
handled as actual Visual Basic errors by the rest of your application.

In order to test for all possible errors, you may need to generate some of the

Microsoft Office 97/Visual Basic Programmer's Guide Page 337 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

errors in your code. You can generate an error in your code with the Raise
method of the Err object. The Raise method takes a list of named arguments
that can be passed with the method. When the code reaches a Resume
statement, the Clear method of the Err object is invoked. It is necessary to
regenerate the error in order to pass it back to the previous procedure on the
call stack.

You can also simulate any Visual Basic runtime error by supplying the error
code for that error.

Defining Your Own Errors

Sometimes you may want to define errors in addition to those defined by Visual
Basic. For example, an application that relies on a modem connection might
generate an error when the carrier signal is dropped. If you want to generate
and trap your own errors, you can add your error numbers to the
vbObjectError constant.

The vbObjectError constant reserves the numbers ranging from its own offset
to the sum of its offset and 512. Using a number higher than this will ensure
that your error numbers will not conflict with future versions of Visual Basic.

To define your own error numbers, you add constants to the declarations
section of your module.

' Error constants
Const gLostCarrier = 1 + vbObjectError + 512
Const gNoDialTone = 2 + vbObjectError + 512

You can then use the Raise method as you would with any of the intrinsic
errors. In this case, the description property of the Err object will return a
standard description — "Applicationdefined or object defined error." To provide
your own error description, you will need to add it as a parameter to the Raise
method.

Inline Error Handling

When you check for errors immediately after each line that may cause an error,
you are performing inline error handling. Using inline error handling, you can
write functions and statements that return error numbers when an error occurs;
raise a Visual Basic error in a procedure and handle the error in the calling
procedure; or write a function to return a Variant data type, and use the
Variant to indicate to the calling procedure that an error occurred.

Returning Error Numbers

There are a number of ways to return error numbers. The simplest way is to
create functions and statements that return an error number, instead of a value,
if an error occurs. The following example shows how you can use this approach
in the FileExists function example, which indicates whether or not a particular
file exists.

Microsoft Office 97/Visual Basic Programmer's Guide Page 338 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Function FileExists (p As String) As Long
If Dir (p) <> " " Then

FileExists = conSuccess ' Return a constant indicatin
Else

FileExists = conFailure ' Return failure constant.
End If

End Function

Dim ResultValue As Long
ResultValue = FileExists ("C:\Testfile.txt")
If ResultValue = conFailure Then

.

. ' Handle the error.

.
Else

.

. ' Proceed with the program.

.
End If

The key to inline error handling is to test for an error immediately after each
statement or function call. In this manner, you can design a handler that
anticipates exactly the sort of error that might arise and resolve it accordingly.
This approach does not require that an actual runtime error arise.

Handling Errors in the Calling Procedure

Another way to indicate an error condition is to raise a Visual Basic error in the
procedure itself, and handle the error in an inline error handler in the calling
procedure. The next example shows the same FileExists procedure, raising an
error number if it is not successful. Before calling this function, the On Error
Resume Next statement sets the values of the Err object properties when an
error occurs, but without trying to run an errorhandling routine.

The On Error Resume Next statement is followed by errorhandling code. This
code can check the properties of the Err object to see if an error occurred. If
Err.Number doesn't contain zero, an error has occurred, and the errorhandling
code can take the appropriate action based on the values of the Err object's
properties.

Function FileExists (p As String)
If Dir (p) <> " " Then

Err.Raise conSuccess ' Return a constant i
Else ' the file exists.

Err.Raise conFailure ' Raise error number
End If

End Function

Dim ResultValue As Long
On Error Resume Next
ResultValue = FileExists ("C:\Testfile.txt")
If Err.Number = conFailure Then

.

. ' Handle the error.

.
Else

.

Microsoft Office 97/Visual Basic Programmer's Guide Page 339 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

. ' Continue program.

.
End If

The next example uses both the return value and one of the passed arguments
to indicate whether or not an error condition resulted from the function call.

Function Power (X As Long, P As Integer, ByRef Result As Integer) _
As Long

On Error GoTo ErrorHandler
Result = x^P
Exit Function

ErrorHandler:
Power = conFailure

End Function

' Calls the Power function.
Dim lngReturnValue As Long, lngErrorMaybe As Long
lngErrorMaybe = Power (10, 2, lngReturnValue)
If lngErrorMaybe Then

.

. ' Handle the error.

.
Else

.

. ' Continue program.

.
End If

If the function was written simply to return either the result value or an error
code, the resulting value might be in the range of error codes, and your calling
procedure would not be able to distinguish them. By using both the return value
and one of the passed arguments, your program can determine that the
function call failed, and take appropriate action.

Using Variant Data Types

Another way to return inline error information is to take advantage of the Visual
Basic Variant data type and some related functions. A Variant has a tag that
indicates what type of data is contained in the variable, and it can be tagged as
a Visual Basic error code. You can write a function to return a Variant, and use
this tag to indicate to the calling procedure that an error has occurred.

The following example shows how the Power function can be written to return a
Variant.

Function Power (X As Long, P As Integer) As Variant
On Error GoTo ErrorHandler
Power = x^P
Exit Function

ErrorHandler:
Power = CVErr(Err.Number) ' Convert error code to tagge

End Function

' Calls the Power function.
Dim varReturnValue As Variant

Microsoft Office 97/Visual Basic Programmer's Guide Page 340 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

varReturnValue = Power (10, 2)
If IsError (varReturnValue) Then

.

. ' Handle the error.

.
Else

.

. ' Continue program.

.
End If

Centralized Error Handling

When you add errorhandling code to your applications, you'll quickly discover
that you're handling the same errors over and over. With careful planning, you
can reduce code size by writing a few procedures that your errorhandling code
can call to handle common error situations.

The following FileErrors function shows a message appropriate to the error that
occurred and, where possible, allows the user to choose a button to specify
what action the program should take next. It then returns code to the procedure
that called it. The value of the code indicates which action the program should
take. Note that userdefined constants such as MnErrDeviceUnavailable must
be defined somewhere (either globally, or at the module level of the module
containing the procedure, or within the procedure itself).

Function FileErrors As Integer
Dim intMsgType As Integer, strMsg As String
Dim intResponse As Integer
' Return Value Meaning
' 0 Resume
' 1 Resume Next
' 2 Unrecoverable error
' 3 Unrecognized error
intMsgType = vbExclamation
Select Case Err.Number

Case MnErrDeviceUnavailable
strMsg = "That device appears unavailable."
intMsgType = vbExclamation + 4

Case MnErrDiskNotReady
strMsg = "Insert a disk in the drive and clos

Case MnErrDeviceIO
strMsg = "Internal disk error."
intMsgType = vbExclamation + 4

Case MnErrDiskFull
strMsg = "Disk is full. Continue?"
intMsgType = vbExclamation + 3

Case ErrBadFileName, ErrBadFileNameOrNumber ' Err
strMsg = "That filename is illegal."

Case ErrPathDoesNotExist
strMsg = "That path doesn't exist."

Case ErrBadFileMode
strMsg = "Can't open your file for that type

Case ErrFileAlreadyOpen ' Err
strMsg = "This file is already open."

Case ErrInputPastEndOfFile
strMsg = "This file has a nonstandard end-of-
strMsg = strMsg & "or an attempt was made to
strMsg = strMsg & "the end-of-file marker."

Microsoft Office 97/Visual Basic Programmer's Guide Page 341 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Case Else
FileErrors = 3
Exit Function

End Select
intResponse = MsgBox (strMsg, strMmsgType, "Disk Error")
Select Case intRresponse

Case 1, 4 ' OK, Retry buttons.
FileErrors = 0

Case 5 ' Ignore button.
FileErrors = 1

Case 2, 3 ' Cancel, End buttons.
FileErrors = 2

Case Else
FileErrors = 3

End Select
End Function

This procedure handles common file and diskrelated errors. If the error is not
related to disk Input/Output, it returns the value 3. The procedure that calls this
procedure should then either handle the error itself, regenerate the error with
the Raise method, or call another procedure to handle it.

Note As you write larger applications, you'll find that you are using the same
constants in several procedures in various forms and modules. Making those
constants public and declaring them in a single standard module may better
organize your code and save you from typing the same declarations repeatedly.

You can simplify error handling by calling the FileErrors procedure wherever you
have a procedure that reads or writes to disk. For example, you've probably
used applications that warn you if you attempt to replace an existing disk file.
Conversely, when you try to open a file that doesn't exist, many applications
warn you that the file does not exist and ask if you want to create it. In both
instances, errors can occur when the application passes the file name to the
operating system.

Turning Off Error Handling

If an error trap has been enabled in a procedure, it is automatically disabled
when the procedure finishes running. However, you may want to turn off an
error trap in a procedure while the code in that procedure is still running. To
turn off an enabled error trap, use the On Error GoTo 0 statement. After Visual
Basic runs this statement, errors are detected but not trapped within the
procedure. You can use On Error GoTo 0 to turn off error handling anywhere in
a procedure — even within an errorhandling routine itself.

Debugging Code with Error Handlers

When you are debugging code, you may find it confusing to analyze its behavior
when it generates errors that are trapped by an error handler. You could
comment out the On Error line in each module in the project, but this is also
cumbersome.

Instead, while debugging, you could turn off error handlers so that every time
there's an error, you enter break mode. To do this, select the Break on All
Errors option on the General tab in the Options dialog box (Tools menu).

Microsoft Office 97/Visual Basic Programmer's Guide Page 342 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

With this option selected, when an error occurs anywhere in the project, you will
enter break mode and the Watch window will display the code where the error
occurred. If this option is not selected, an error may or may not cause an error
message to be displayed, depending on where the error occurred. For example,
it may have been raised by an external object referenced by your application. If
it does display a message, it may be meaningless, depending on where the
error originated.

Handling Errors in Referenced Objects

In procedures that reference one or more objects, it becomes more difficult to
determine where an error occurs, particularly if it occurs in another application's
object. For example, consider an application that consists of a form module
(MyForm), that references a class module (MyClassA), that in turn references a
Microsoft Excel Worksheet object.

If the Worksheet object does not handle a particular error arising in the
worksheet, but regenerates it instead, Visual Basic will pass the error to the
referencing object, MyClassA. Visual Basic automatically remaps untrapped
errors arising in objects outside of Visual Basic as error code 440.

The MyClassA object can either handle the error (which is preferable), or
regenerate it. The interface specifies that any object regenerating an error that
arises in a referenced object should not simply propagate the error (pass as
error code 440), but should instead remap the error number to something
meaningful. When you remap the error, the number can either be a number
defined by Visual Basic that indicates the error condition, if your handler can
determine that the error is similar to a defined Visual Basic error (for instance,
overflow or division by zero), or an undefined error number. Add the new
number to the Visual Basic constant vbObjectError to notify other handlers
that this error was raised by your object.

Whenever possible, a class module should try to handle every error that arises
within the module itself, and should also try to handle errors that arise in an
object it references that are not handled by that object. However, there are
some errors that it cannot handle because it cannot anticipate them. There are
also cases where it is more appropriate for the referencing object to handle the
error, rather than the referenced object.

When an error occurs in the form module, Visual Basic raises one of the
predefined Visual Basic error numbers.

Note If you are creating a public class, be sure to clearly document the
meaning of each nonVisual Basic errorhandler you define. Other programmers
who reference your public classes will need to know how to handle errors raised
by your objects.

When you regenerate an error, leave the Err object's other properties
unchanged. If the raised error is not trapped, the Source and Description
properties can be displayed to help the user take corrective action.

Handling Errors Passed from Reference Objects

Microsoft Office 97/Visual Basic Programmer's Guide Page 343 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

A class module could include the following error handler to accommodate any
error it might trap, regenerating those it is unable to resolve.

MyServerHandler:
Select Case ErrNum

Case 7 ' Handle out-of-memory error.
.
.
.

Case 440 ' Handle external object erro
Err.Raise Number:=vbObjectError + 9999

' Error from another Visual Basic object.
Case Is > vbObjectError and Is < vbObjectError + 6553

ObjectError = ErrNum
Select Case ObjectError

' This object handles the error, based on err
' documentation for the object.
Case vbObjectError + 10
.
.
.
Case Else

' Remap error as generic object error
Err.Raise Number:=vbObjectError + 999

End Select
Case Else

' Remap error as generic object error and reg
Err.Raise Number:=vbObjectError + 9999

End Select
Err.Clear
Resume Next

The Case 440 statement traps errors that arise in a referenced object outside
the Visual Basic application. In this example, the error is simply propagated
using the value 9999, because it is difficult for this type of centralized handler
to determine the cause of the error. When this error is raised, it is generally the
result of a fatal automation error (one that would cause the component to end
execution), or because an object didn't correctly handle a trapped error. Error
440 shouldn't be propagated unless it is a fatal error. If this trap were written
for an inline handler as discussed previously in "Inline Error Handling," it might
be possible to determine the cause of the error and correct it.

The statement Case Is > vbObjectError and Is < vbObjectError + 65536
traps errors that originate in an object within the Visual Basic application, or
within the same object that contains this handler. Only errors defined by objects
will be in the range of the vbObjectError offset.

The error code documentation provided for the object should define the possible
error codes and their meaning, so that this portion of the handler can be written
to intelligently resolve anticipated errors. The actual error codes may be
documented without the vbObjectError offset, or they may be documented
after being added to the offset, in which case the Case Else statement should
subtract vbObjectError, rather than add it. On the other hand, object errors
may be constants, shown in the type library for the object, as shown in the
Object Browser. In that case, use the error constant in the Case Else
statement, instead of the error code.

Microsoft Office 97/Visual Basic Programmer's Guide Page 344 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Any error not handled should be regenerated with a new number, as shown in
the Case Else statement. Within your application, you can design a handler to
anticipate this new number you've defined. If this were a public class, you
would also want to include an explanation of the new errorhandling code in your
application's documentation.

The last Case Else statement traps and regenerates any other errors that are
not trapped elsewhere in the handler. Because this part of the trap will catch
errors that may or may not have the vbObjectError constant added, you
should simply remap these errors to a generic "unresolved error" code. That
code should be added to vbObjectError, indicating to any handler that this
error originated in the referenced object.

Debugging Error Handlers in Referenced Objects

When you are debugging an application that has a reference to an object
created in Visual Basic or a class defined in a class module, you may find it
confusing to determine which object generates an error. To make this easier,
you can select the Break in Class Module option on the General tab in the
Options dialog box (Tools menu). With this option selected, an error in a class
module will cause that class to enter the debugger's break mode, allowing you
to analyze the error.

Approaches to Debugging

The debugging techniques presented in this chapter use the analysis tools
provided by Visual Basic. Visual Basic cannot diagnose or fix errors for you, but
it does provide tools to help you analyze how execution flows from one part of
the procedure to another, and how variables and property settings change as
statements are run. Debugging tools let you look inside your application to help
you determine what happens and why.

Visual Basic debugging support includes breakpoints, break expressions, watch
expressions, stepping through code one statement or one procedure at a time,
and displaying the values of variables and properties. Visual Basic also includes
special debugging features, such as editandcontinue capability, setting the next
statement to run, and procedure testing while the application is in break mode.

Kinds of Errors

To understand how debugging is useful, consider the three kinds of errors you
can encounter, described in the following paragraphs.

Compile errors These result from incorrectly constructed code. If you
incorrectly type a keyword, omit some necessary punctuation, or use a Next
statement without a corresponding For statement at design time, Visual Basic
detects these errors when your code compiles.

Runtime errors These occur while the application is running (and are
detected by Visual Basic) when a statement attempts an operation that is
impossible to carry out. An example of this is division by zero.

Microsoft Office 97/Visual Basic Programmer's Guide Page 345 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Logic errors These occur when an application doesn't perform the way it was
intended. An application can have syntactically valid code, run without
performing any invalid operations, and yet produce incorrect results. Only by
testing the application and analyzing results can you verify that the application
is performing correctly.

How Debugging Tools Help

Debugging tools are designed to help you with troubleshooting logic and run-
time errors and observing the behavior of code that has no errors.

For instance, an incorrect result may be produced at the end of a long series of
calculations. In debugging, the task is to determine what and where something
went wrong. Perhaps you forgot to initialize a variable, chose the wrong
operator, or used an incorrect formula.

There are no magic tricks to debugging, and there is no fixed sequence of steps
that works every time. Basically, debugging helps you understand what's going
on while your application runs. Debugging tools give you a snapshot of the
current state of your application, including the values of variables, expressions,
and properties, and the names of active procedure calls. The better you
understand how your application is working, the faster you can find bugs.

Among its many debugging tools, Visual Basic provides several helpful buttons
on the Debug toolbar, shown in the following illustration.

The following table briefly describes each tool's purpose. This chapter discusses
situations where each of these tools can help you debug or analyze an
application more efficiently.

Microsoft Office 97/Visual Basic Programmer's Guide Page 346 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Avoiding Bugs

There are several ways to avoid creating bugs in your applications:

� Design your applications carefully by writing down the relevant events and
the way your code will respond to each one. Give each event procedure
and each general procedure a specific, welldefined purpose.

� Include numerous comments. As you go back and analyze your code,
you'll understand it much better if you state the purpose of each
procedure in comments.

� Explicitly reference objects whenever possible. Declare objects as they are
listed in the Classes box in the Object Browser, rather than using a
Variant or the generic Object data types.

� Develop a consistent naming scheme for the variables and objects in your
application.

Debugging tool Purpose

Run/Continue Switches from design time to run time (Run)
or switches from break mode to run time
(Continue). (In break mode, the name of the
button changes to Continue.)

Break Switches from run time to break mode.

Reset Switches from break mode or run time to
design time.

Toggle Breakpoint Defines a line in a module where Visual Basic
suspends execution of the application.

Step Into Runs the next executable line of code in the
application and steps into procedures.

Step Over Runs the next executable line of code in the
application without stepping into procedures.

Step Out Runs the remainder of the current procedure
and breaks at the next line in the calling
procedure.

Locals Window Displays the current value of local variables.

Immediate Window Allows you to run code or query values while
the application is in break mode.

Watch Window Displays the values of selected expressions.

Quick Watch Lists the current value of an expression while
the application is in break mode.

Call Stack While in break mode, displays a dialog box that
shows all procedures that have been called but
not yet run to completion.

Microsoft Office 97/Visual Basic Programmer's Guide Page 347 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

� One of the most common sources of errors is incorrectly typing a variable
name or confusing one control with another. You can use Option Explicit
to avoid misspelling variable names.

Design Time, Run Time, and Break Mode

To test and debug an application, you need to understand which of three modes
you are in at any given time. You use Visual Basic at design time to create an
application, and at run time to run it. In break mode, the execution of the
program is suspended so you can examine and alter data. The Visual Basic title
bar always shows you the current mode.

The characteristics of the three modes and techniques for moving among them
are listed in the following table.

Mode Description

Design time Most of the work of creating an application is
done at design time. You can design forms,
draw controls, write code, and use the
Properties window to set or view property
settings. You cannot run code or use debugging
tools, except for setting breakpoints and
creating watch expressions.

To switch to run time, click the Run button. To
switch to break mode, click Step Into on the
Run menu; the application enters break mode
at the first executable statement.

Run time When an application takes control, you interact
with the application the same way a user
would. You can view code, but you cannot
change it.

To switch back to design time, click the Reset
button. To switch to break mode, click the
Break button.

Break mode Execution is suspended while running the
application. You can view and edit code,
examine or modify data, restart the
application, end execution, or continue
execution from the same point.

To switch to run time, click the Continue
button (in break mode, the Run button
becomes the Continue button). To switch to
design time, click the Reset button.

You can set breakpoints and watch expressions
at design time, but other debugging tools work
only in break mode. See "Using Break Mode"
later in this chapter.

Microsoft Office 97/Visual Basic Programmer's Guide Page 348 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Using the Debugging Windows

Sometimes you can find the cause of a problem by running portions of code.
More often, however, you'll also have to analyze what's happening to the data.
You might isolate a problem in a variable or property with an incorrect value,
and then have to determine how and why that variable or property was
assigned an incorrect value.

With the debugging windows, you can monitor the values of expressions and
variables while stepping through the statements in your application. There are
three debugging windows: the Immediate window, the Watch window, and
the Locals window. To display one of these windows, either click the
corresponding command on the View menu, or click the corresponding button
on the Debug toolbar.

The Immediate window shows information that results from debugging
statements in your code, or that you request by typing commands directly into
the window.

The Watch window shows the current watch expressions, which are expressions
whose values you decide to monitor as the code runs. A break expression is a
watch expression that will cause Visual Basic to enter break mode when a
certain condition you define becomes true. In the Watch window, the Context
column indicates the procedure, module, or modules in which each watch
expression is evaluated. The Watch window can display a value for a watch
expression only if the current statement is in the specified context. Otherwise,
the Value column shows a message indicating the statement is not in context.

The Locals window shows the value of any variables within the scope of the
current procedure. As the execution switches from procedure to procedure, the
contents of the Locals window changes to reflect only the variables applicable
to the current procedure.

Tip A variable that represents an object appears in the Locals window with a
plus sign (+) to the left of its name. You can click the plus sign to expand the
variable, displaying the properties of the object and their current values. If a
property of the object contains another object, that can be expanded as well.
The same holds true for variables that contain arrays or userdefined types.

Using Break Mode

At design time, you can change the design or code of an application, but you
cannot see how your changes affect the way the application runs. At run time,
you can watch how the application behaves, but you cannot directly change the
code.

Break mode halts the operation of an application and gives you a snapshot of its
condition at any moment. Variable and property settings are preserved, so you
can analyze the current state of the application and enter changes that affect
how the application runs. When an application is in break mode, you can do the
following:

Microsoft Office 97/Visual Basic Programmer's Guide Page 349 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

� Modify code in the application.

� Observe the condition of the application's interface.

� Determine which active procedures have been called.

� Watch the values of variables, properties, and statements.

� Change the values of variables and properties.

� View or control which statement the application will run next.

� Run Visual Basic statements immediately.

� Manually control the operation of the application.

Note You can set breakpoints and watch expressions at design time, but other
debugging tools work only in break mode.

Entering Break Mode at a Problem Statement

When debugging, you may want the application to halt at the place in the code
where you think the problem might have started. This is one reason Visual Basic
provides breakpoints and Stop statements. A breakpoint defines a statement or
set of conditions at which Visual Basic automatically stops execution and puts
the application in break mode without running the statement containing the
breakpoint.

You can enter break mode manually if you do any of the following while the
application is running:

� Press CTRL+BREAK.

� Choose Break from the Run menu.

� Click the Break button on the toolbar.

It's possible to break execution when the application is idle (when it is between
processing of events). When this happens, execution does not stop at a specific
line, but Visual Basic switches to break mode anyway.

You can also enter break mode automatically when any of the following occurs:

� A statement generates an untrapped runtime error.

� A statement generates a runtime error and Break on All Errors was
selected in the General tab on the Options dialog box (Tools menu).

� A break expression defined in the Add Watch dialog box changes or

Microsoft Office 97/Visual Basic Programmer's Guide Page 350 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

becomes true, depending on how you defined it.

� Execution reaches a line with a breakpoint.

� Execution reaches a Stop statement.

Fixing a RunTime Error and Continuing

Some runtime errors result from simple oversights when entering code; these
errors are easily fixed. Frequent errors include misspelled names and
mismatched properties or methods with objects.

Often you can enter a correction and continue program execution with the same
line that halted the application, even though you've changed some of the code.
Simply choose Continue from the Run menu or click the Continue button on
the toolbar. As you continue running the application, you can verify that the
problem is fixed.

If you select the Break on All Errors option, Visual Basic disables error
handlers in code, so that when a statement generates a runtime error, Visual
Basic enters break mode. If Break on All Errors is not selected, and if an error
handler exists, it will intercept code and take corrective action.

Some changes (most commonly, changing variable declarations or adding new
variables or procedures) require you to restart the application. When this
happens, Visual Basic presents a message that asks if you want to restart the
application.

Monitoring Data with Watch Expressions

As you debug your application, a calculation may not produce the result you
want or problems might occur when a certain variable or property assumes a
particular value or range of values. Many debugging problems aren't
immediately traceable to a single statement, so you may need to observe the
behavior of a variable or expression throughout a procedure.

Visual Basic automatically monitors watch expressions — expressions that you
define — for you. When the application enters break mode, these watch
expressions appear in the Watch window, where you can observe their values.

You can also direct watch expressions to put the application into break mode
whenever the expression's value changes or equals a specified value. For
example, instead of stepping through perhaps tens or hundreds of loops one
statement at a time, you can use a watch expression to put the application in
break mode when a loop counter reaches a specific value. Or you may want the
application to enter break mode each time a flag in a procedure changes value.

Adding, Editing, or Deleting a Watch Expression

You can add, edit, or delete a watch expression at design time or in break
mode. To add watch expressions, you can use the Add Watch dialog box
(Debug menu).

Microsoft Office 97/Visual Basic Programmer's Guide Page 351 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

You use the Edit Watch dialog box (Debug menu) to modify or delete an
existing watch expression. The Add Watch and Edit Watch dialog boxes share
the same components (except the Delete button, which only appears in the
Edit Watch dialog box). These shared components are described in the
following table.

Tip You can add a watch expression by dragging an expression from a module
to the Watch window.

Using Quick Watch

Component Description

Expression box Contains the expression that the watch
expression evaluates. The expression is a
variable, a property, a function call, or any
other valid expression. When you display the
Add Watch dialog box, the Expression box
contains the current expression (if any).

Context option group Sets the scope of variables watched in the
expression. Use if you have variables of the
same name with different scope. You can also
restrict the scope of variables in watch
expressions to a specific procedure or to a
specific form or module, or you can have it
apply to the entire application by selecting All
Procedures and All Modules. Visual Basic can
evaluate a variable in a narrow context more
quickly.

Watch Type option group Sets how Visual Basic responds to the watch
expression. Visual Basic can watch the
expression and display its value in the Watch
window when the application enters break
mode. Or you can have the application enter
break mode automatically when the expression
evaluates to a true (nonzero) statement or
each time the value of the expression changes.

Microsoft Office 97/Visual Basic Programmer's Guide Page 352 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

While in break mode, you can check the value of a property, variable, or
expression for which you have not defined a watch expression. To check such
expressions, use the Quick Watch dialog box (Debug menu or toolbar). The
Quick Watch dialog box shows the value of the selected expression in a
module. To continue watching this expression, click the Add button; the Watch
window, with relevant information from the Instant Watch dialog box already
entered, is displayed. If Visual Basic cannot evaluate the value of the current
expression, the Add button is disabled.

Using a Breakpoint to Selectively Halt Execution

At run time, a breakpoint tells Visual Basic to halt just before executing a
specific line of code. When Visual Basic is executing a procedure and it
encounters a line of code with a breakpoint, it switches to break mode.

You can set or remove a breakpoint in break mode or at design time, or at run
time when the application is idle. To set or remove a breakpoint, click in the
margin (the left edge of the module window) next to a line of code. When you
set a breakpoint, Visual Basic highlights the selected line in bold, using the
colors that you specified on the Editor Format tab in the Options dialog box
(Tools menu).

In a module, Visual Basic indicates a breakpoint by displaying the text on that
line in bold and in the colors specified for a breakpoint. A rectangular highlight
surrounds the current statement, or the next statement to be run. When the
current statement also contains a breakpoint, only the rectangular outline
highlights the line of code. After the current statement moves to another line,
the line with the breakpoint is displayed in bold and in color again. The
following illustration shows a procedure with a breakpoint on the fourth line.

After you reach a breakpoint and the application is halted, you can examine the
application's current state. Checking results of the application is easy, because
you can move the focus among the forms and modules of your application and
the debugging windows.

A breakpoint halts the application just before executing the line that contains
the breakpoint. If you want to observe what happens when the line with the

Microsoft Office 97/Visual Basic Programmer's Guide Page 353 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

breakpoint runs, you must run at least one more statement. To do this, use
Step Into or Step Over.

When you are trying to isolate a problem, remember that a statement might be
indirectly at fault because it assigns an incorrect value to a variable. To examine
the values of variables and properties while in break mode, use the Locals
window, Quick Watch, watch expressions, or the Immediate window.

Using Stop Statements

Placing a Stop statement in a procedure is an alternative to setting a
breakpoint. Whenever Visual Basic encounters a Stop statement, it halts
execution and switches to break mode. Although Stop statements act like
breakpoints, they aren't set or cleared the same way.

Remember that a Stop statement does nothing more than temporarily halt
execution, while an End statement halts execution, resets variables, and
returns to design time. You can always click Continue on the Run menu to
continue running the application.

Running Selected Portions of Your
Application

If you can identify the statement that caused an error, a single breakpoint
might help you locate the problem. More often, however, you know only the
general area of the code that caused the error. A breakpoint helps you isolate
that problem area. You can then use Step Into and Step Over to observe the
effect of each statement. If necessary, you can also skip over statements or
back up by starting execution at a new line.

Note You must be in break mode to use these commands. They are not
available at design time or run time.

Using Step Into

You can use Step Into to run code one statement at a time. (This is also known
as single stepping.) When you use Step Into to step through code one
statement at a time, Visual Basic temporarily switches to run time, runs the
current statement, and advances to the next statement. Then it switches back
to break mode. To step through your code this way, click the Step Into button

Step Mode Description

Step Into Run the current statement and break at the
next line, even if it's in another procedure.

Step Over Run the entire procedure called by the current
line and break at the line following the current
line.

Step Out Run the remainder of the current procedure
and break at the statement following the one
that called the procedure.

Microsoft Office 97/Visual Basic Programmer's Guide Page 354 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

on the Debug toolbar.

Note Visual Basic allows you to step into individual statements, even if they
are on the same line. A line of code can contain two or more statements,
separated by a colon (:). Visual Basic uses a rectangular outline to indicate
which of the statements will run next. Breakpoints apply only to the first
statement of a multiplestatement line.

Using Step Over

Step Over is identical to Step Into, except when the current statement contains
a call to a procedure. Unlike Step Into, which steps into the called procedure,
Step Over runs it as a unit and then steps to the next statement in the current
procedure. To step through your code this way, click the Step Over button on
the Debug toolbar.

Suppose, for example, that the statement calls the procedure SetAlarmTime. If
you choose Step Into, the module shows the SetAlarmTime procedure and sets
the current statement to the beginning of that procedure. This is the better
choice only if you want to analyze the code within SetAlarmTime. If you use
Step Over, the module continues to display the current procedure. Execution
advances to the statement immediately after the call to SetAlarmTime, unless
SetAlarmTime contains a breakpoint or a Stop statement. Use Step Over if you
want to stay at the same level of code and don't need to analyze the
SetAlarmTime procedure.

You can alternate freely between Step Into and Step Over. The command you
use depends on which portions of code you want to analyze at any given time.

Using Step Out

Step Out is similar to Step Into and Step Over, except it advances past the
remainder of the code in the current procedure. If the procedure was called
from another procedure, it advances to the statement immediately following the
one that called the procedure. To step through your code this way, click the
Step Out button on the Debug toolbar.

Bypassing Sections of Code

When your application is in break mode, you can select a statement further
down in your code where you want execution to stop and then click Run To
Cursor on the Debug menu. This lets you "step over" uninteresting sections of
code, such as large loops.

Setting the Next Statement to Be Run

While debugging or experimenting with an application, you can select a
statement anywhere in the current procedure and then click Set Next
Statement on the Debug menu to skip a certain section of code — for
instance, a section that contains a known bug — so you can continue tracing
other problems. Or you may want to return to an earlier statement to test part
of the application using different values for properties or variables.

Microsoft Office 97/Visual Basic Programmer's Guide Page 355 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Showing the Next Statement to Be Run

You can click Show Next Statement on the Debug menu to place the
insertion point on the line that will run next. This feature is convenient if you've
been executing code in an error handler and aren't sure where execution will
resume. The Show Next Statement command is available only in break mode.

Monitoring the Call Stack

The Call Stack dialog box (Debug menu or toolbar) shows a list of all active
procedure calls; you can display the Call Stack dialog box only when the
application is in break mode. Active procedure calls are the procedures in the
application that were started but not completed. You can use the list of active
procedure calls to help trace the operation of an application as it runs a series of
nested procedures. For example, an event procedure can call a second
procedure, which can call a third procedure — all before the event procedure
that started this chain is completed. Such nested procedure calls can be difficult
to follow and can complicate the debugging process.

Tracing Nested Procedures

The Call Stack dialog box lists all the active procedure calls in a series of
nested calls. It places the earliest active procedure call at the bottom of the list
and adds subsequent procedure calls to the top of the list. The information
given for each procedure begins with the module name, followed by the name of
the called procedure. You can click the Show button in the Call Stack dialog
box to display the statement in a procedure that passes control of the
application to the next procedure in the list.

Note Because the Call Stack dialog box doesn't indicate the variable assigned
to an instance of a class, it does not distinguish between multiple instances of
classes.

Testing Data and Procedures with the
Immediate Window

Sometimes when you are debugging or experimenting with an application, you
may want to run individual procedures, evaluate expressions, or assign new
values to variables or properties. You can use the Immediate window to
accomplish these tasks. You evaluate expressions by printing their values in the
Immediate window.

Printing Information in the Immediate Window

There are two ways to print to the Immediate window:

� Include Debug.Print statements in the application code.

� Enter statements that use the Print method directly in the Immediate

Microsoft Office 97/Visual Basic Programmer's Guide Page 356 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

window.

These printing techniques offer the following advantages over watch
expressions:

� You don't have to break execution to get feedback on how the application
is performing. You can see data or other messages displayed as you run
the application.

� Feedback is displayed in a separate area (the Immediate window), so it
does not interfere with output that a user sees.

Printing from Application Code

The Print method sends output to the Immediate window whenever you
include the Debug object qualifier. For example, the following statement prints
the value of Salary to the Immediate window every time it is run.

Debug.Print "Salary = "; Salary

This technique works best when there is a particular place in your application
code at which the variable (in this case, Salary) is known to change. For
example, you might put the previous statement in a loop that repeatedly alters
Salary.

Printing from the Immediate Window

After you're in break mode, you can move the focus to the Immediate window
to examine data. You can evaluate any valid expression in the Immediate
window, including expressions involving properties. The currently active module
determines the scope. Type a statement that uses the Print method and then
press ENTER to see the result. A question mark (?) is useful shorthand for the
Print method.

Assigning Values to Variables and Properties

As you start to isolate the possible cause of an error, you may want to test the
effects of particular data values. In break mode, you can set values with
statements like the following in the Immediate window.

VScroll1.Value = 100
MaxRows = 50

The first statement alters a property of the VScroll1 object, and the second
assigns a value to the variable MaxRows.

After you set the values of one or more properties and variables, you can
continue execution to see the results or you can test the effect of the change on
procedures.

Microsoft Office 97/Visual Basic Programmer's Guide Page 357 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Testing Procedures with the Immediate Window

The Immediate window evaluates any valid Visual Basic executable statement,
but it doesn't accept data declarations. You can enter calls to procedures,
however, which allows you to test the possible effect of a procedure with any
given set of arguments. Simply enter a statement in the Immediate window
(while in break mode) as you would in a module, as shown in the following
statements.

X = Quadratic(2, 8, 8)
DisplayGraph 50, Arr1
Form_MouseDown 1, 0, 100, 100

When you press the ENTER key, Visual Basic switches to run time to run the
statement, and then returns to break mode. At that point, you can see results
and test any possible effects on variables or property values.

If Option Explicit is in effect (requiring all variable declarations to be explicit),
any variables you enter in the Immediate window must already be declared
within the current scope. Scope applies to procedure calls just as it does to
variables. You can call any procedure within the currently active form. You can
always call a procedure in a module, unless you define the procedure as
Private, in which case you can call the procedure only while executing in the
module.

You can use the Immediate window to run a procedure repeatedly, testing the
effect of different conditions. Each separate call of the procedure is maintained
as a separate instance by Visual Basic. This allows you to separately test
variables and property settings in each instance of the procedure. The Call
Stack dialog box maintains a listing of the procedures run by each command
from the Immediate window. Newer listings are at the top of the list. You can
use the Call Stack dialog box to select any instance of a procedure, and then
print the values of variables from that procedure in the Immediate window.

Note Although most statements are supported in the Immediate window, a
control structure is valid only if it can be completely expressed on one line of
code; use colons to separate the statements that make up the control structure.

Checking Error Numbers

You can use the Immediate window to display the message associated with a
specific error number. For example, if you enter the statement Error 58 in the
Immediate window and then press ENTER to run the statement, the
appropriate error message ("File already exists") is displayed.

Tips for Using the Immediate Window

Here are some shortcuts you can use in the Immediate window:

� After you enter a statement, you can run it again by moving the insertion
point back to that statement and pressing ENTER anywhere on the line.

Microsoft Office 97/Visual Basic Programmer's Guide Page 358 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

� Before pressing ENTER, you can edit the current statement to alter its
effects.

� You can use the mouse or the arrow keys to move around in the
Immediate window. Don't press ENTER unless you are at a statement
you want to run.

� CTRL+HOME will take you to the top of the Immediate window;
CTRL+END will take you to the bottom.

� The HOME and END keys move to the beginning and end of the current
line.

Special Debugging Considerations

Certain events that are a common part of using Microsoft Windows can pose
special problems for debugging an application. It's important to be aware of
these special problems so they don't confuse or complicate the debugging
process.

If you remain aware of how break mode can put events at odds with what your
application expects, you can usually find solutions. In some event procedures,
you may need to use Debug.Print statements to monitor values of variables or
properties instead of using watch expressions or breakpoints. You may also
need to change the values of variables that depend on the sequence of events.
This is discussed in the following topics.

Breaking Execution During a MouseDown or
KeyDown Event Procedure

If you break execution during a MouseDown event procedure, you may release
the mouse button or use the mouse to do any number of tasks. When you
continue execution, however, the application assumes that the mouse button is
still pressed down. You don't get a MouseUp event until you press the mouse
button down again and then release it.

When you press the mouse button down during run time, you break execution
in the MouseDown event procedure again, assuming you have a breakpoint
there. In this scenario, you never get to the MouseUp event. The solution is
usually to remove the breakpoint in the MouseDown procedure.

If you break execution during a KeyDown procedure, similar considerations
apply. If you retain a breakpoint in a KeyDown procedure, you may never get a
KeyUp event.

Breaking Execution During a GotFocus or LostFocus
Event Procedure

If you break execution during a GotFocus or LostFocus event procedure, the

Microsoft Office 97/Visual Basic Programmer's Guide Page 359 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

timing of system messages can cause inconsistent results. Use a Debug.Print
statement instead of a breakpoint in GotFocus or LostFocus event procedures.

Tips for Debugging

There are several ways to simplify debugging:

� When your application doesn't produce correct results, browse through the
code and try to find statements that may have caused the problem. Set
breakpoints at these statements and restart the application.

� When the program halts, test the values of important variables and
properties. Use Quick Watch or set watch expressions to monitor these
values. Use the Immediate window to examine variables and
expressions.

� Select Break on All Errors on the General tab of the Options dialog box
(Tools menu) to determine where an error occurred. Step through your
code, using watch expressions and the Locals window to monitor how
values change as the code runs.

� If an error occurs in a loop, define a break expression to determine where
the problem occurs. Use the Immediate window together with Set Next
statement to rerun the loop after making corrections.

Contents
� Developing Internet Applications
� Internet Terms and Concepts
� Working with Hyperlinks
� Saving Documents and Objects as HTML
� Opening and Importing HTML Data
� Using the WebBrowser Control
� Using the Internet Transfer Control
� Using the WinSock Control
� Setting Up a Personal Web Server

This chapter shows you how to use Microsoft Office 97 to develop applications
that retrieve, publish, and share information on the Internet or a local area
network (LAN). For example, you can create applications that display Hypertext
Markup Language (HTML) documents, or you can publish or share information

C H A P T E R 15 Microsoft Office 97/Visual Basic Programmer's Guide

Developing Applications for the Internet and
World Wide Web

Microsoft Office 97/Visual Basic Programmer's Guide Page 360 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

located on a Web server. You can also create hyperlinks that you click to open
Microsoft Office documents or objects located on a local hard disk or a LAN.

Developing Internet Applications

The Internet provides an effective solution for broadcasting information across
different platforms. For example, many organizations use the Internet to
distribute product information, directories, or company policy manuals to people
both within and outside of the organization. By applying Internet technologies
to their internal network, organizations can help their employees share,
analyze, and find information more easily.

Microsoft Office 97 is a flexible and robust tool for creating Internet content. By
using the Microsoft Office Internet features, you can create applications to
publish and distribute information to peers, management, and other functional
groups in a timely manner, regardless of where they are located. For example,
you can enter data into a Microsoft Access database, and then publish that
database on your company's Web server so that users on a variety of platforms
can access that data with a Web browser.

In Microsoft Word, Microsoft Excel, Microsoft PowerPoint, and Microsoft Access,
you can use Visual Basic for Applications to automate and extend Internet
features in your custom applications.

Internet Terms and Concepts

In all likelihood, you are well aware of what the Internet is, and you've had a
chance to take advantage of its many resources. Even if you have used the
Internet, the following overview will help to make sure you understand the
terms used to describe it in this chapter.

The Internet is a collection of computer networks that connects millions of
computers around the world. The World Wide Web is a client/server technology
used to access a vast variety of digital information from the Internet. By using a
software client called a Web browser, such as Microsoft Internet Explorer, and a
modem or other connection to an Internet Service Provider (ISP), you can easily
access text, graphics, sound, and other digital information from practically any
computer in the world that is running the appropriate server software on the
Internet.

Internet Protocols

A Web browser uses a variety of standardized methods for addressing and
communicating with Internet servers. These methods are called protocols. The
most common protocol is Hypertext Transfer Protocol (HTTP), which was
originally created to publish and view linked text documents, but has been
extended to display and run a growing variety of graphics, sound, video, and
other multimedia content. Other common protocols include File Transfer
Protocol (FTP), Gopher, telnet, RealAudio, as well as protocols used to start
other applications such as email and Usenet newsreaders.

The following table describes many of the protocols commonly in use today.

Microsoft Office 97/Visual Basic Programmer's Guide Page 361 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Protocol Protocol name Description

http Hypertext Transfer Protocol Goes to Web pages that
contain text, graphics,
sound, and other digital
information from a Web
server on the World Wide
Web.

ftp File Transfer Protocol Transfers files between
computers on the Internet.

gopher Gopher protocol Displays information on a
Gopher server.

wais WAIS protocol Accesses a Wide Area
Information Servers
database.

file File protocol Opens a file on a local hard
disk or LAN.

https Hypertext Transfer Protocol
with privacy

Establishes an HTTP
connection that uses
Secure Sockets Layer (SSL)
encryption.

mailto MailTo protocol Opens your electronic mail
program to send a
message to the specified
Internet e-mail address.

msn Microsoft Network protocol Goes to a location on
MSN™, The Microsoft
Network.

news News protocol Starts a newsreader and
opens the specified Usenet
newsgroup.

nntp Network News Transfer
Protocol

Performs the same function
as News protocol.

mid Musical Instrument Digital
Interface (MIDI) protocol

Plays MIDI sequencer files
if the user's computer has
a sound card.

cid CompuServe Dialer (CID)
protocol

Establishes a point-to-point
protocol (PPP) connection
with the Internet through
CompuServe's network.

prospero Prospero protocol Opens files on the Prospero
distributed file system.

Microsoft Office 97/Visual Basic Programmer's Guide Page 362 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Uniform Resource Locators

To run or display Internet content with a Web browser, you type an address
called a Uniform Resource Locator (URL) into its address box. You can enter a
URL that points to any Internet file type or resource supported by the browser
that will be used to display or run it. You enter most URLs in the following
format:

protocol://serveraddress/path

Protocol specifies the Internet protocol used to establish the connection to the
server, and is generally followed by a colon and two slash marks. Serveraddress
specifies what is usually called the domain name of the Internet server. Path
specifies the location and name of the page or file on the Internet server. For
example, this is the URL for the What's New page on the Microsoft Access
Developer Forum Web site:

http://www.microsoft.com/accessdev/whatsnew.htm

Note For some protocols, URLs have a different format. For example, the
format for a URL that uses the MailTo protocol is mailto:username@domain;
the format for a URL that uses the News protocol is news:newsgroupname; the

telnet Telnet protocol Starts a telnet terminal
emulation program. A
terminal emulation
program is a command-line
interface that you can use
to issue commands on a
remote computer. For
example, by using telnet to
connect to a UNIX server,
you can issue UNIX
commands to perform
operations on that server.

rlogin Rlogin protocol Starts an Rlogin terminal
emulation program.

tn3270 TN3270 protocol Starts a TN3270 terminal
emulation program.

pnm RealAudio protocol Plays RealAudio streaming
audio from a RealAudio
server. Streaming audio
and other streaming media
formats establish a
connection to the server
and start playing
immediately without
downloading an entire file.

mms Microsoft Media Server
(MMS) protocol

Plays media such as
ActiveMovie™ streaming
format files (.asf) from an
MMS server.

Microsoft Office 97/Visual Basic Programmer's Guide Page 363 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

format for a URL that uses the Network News Transfer Protocol is
nntp://newsgroupname.

Hypertext Markup Language and Hyperlinks

Most files you download and open with a Web browser are pages formatted with
Hypertext Markup Language (HTML) tags. HTML tags are codes enclosed in
angle brackets that are used by a Web browser to determine the structure and
appearance of an HTML document, such as graphic elements and text
formatting. For example, the two HTML tags in the following sentence:

Make this text look bold.

Cause the text to display like this when viewed with a Web browser:

Make this text look bold.

To navigate to other pages or multimedia content, a user clicks a hyperlink on a
Web page. A hyperlink is colored and underlined text, or a graphic, that uses
the path specified by a URL to download and open another file, such as another
Web page or some form of multimedia content, such as a picture or sound file.

You can use HTML tags called anchors to create hyperlinks. An anchor with an
HREF attribute goes to a file outside of the current document. For example, the
following anchor creates a hyperlink that goes to the Microsoft home page:

Microsoft Home Page

An anchor with a NAME attribute creates a bookmark at a location within the
same document. Other hyperlinks can go to the bookmark created with this
type of anchor.

HTML was originally a simple system for publishing documents on the Web, but
it's rapidly evolving to include features that you can use to create sophisticated,
interactive applications.

Tip You can view an HTML reference that describes the most commonly used
HTML tags as well as recent additions supported by Microsoft Internet Explorer
and Netscape Navigator at
http://www.microsoft.com/workshop/author/newhtml/.

Extensions to Standard Web Browser Functionality

Standard Web browser functionality is evolving through the addition of a variety
of new technologies such as helper applications, plugins, ActiveX controls,
Java™ applets, and scripting languages. If your Web browser doesn't support
these technologies, you may need to install additional components to be able to
use them.

Helper Applications

Helper applications are typically used to play audio or video files, or to display
certain graphic formats. You may need to install helper applications before you

Microsoft Office 97/Visual Basic Programmer's Guide Page 364 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

can play or display certain content in your Web browser. In more recent
browsers, such as Microsoft Internet Explorer version 3.0 and Netscape
Navigator version 3.0, many of these functions are built into the browser itself,
or are being replaced by one of the other technologies described in this section.

PlugIns

By using plugins, Web page authors can embed content that uses additional
player or reader modules directly within Web pages. For example, there are
plugins used to display Macromedia Director and Apple QuickTime® movies in a
Web page. In order to use Web pages containing content that requires a plugin,
the plugin must be installed beforehand. Microsoft Internet Explorer version 3.0
and Netscape Navigator versions 2.0 and 3.0 can run plugins.

ActiveX Controls

By using ActiveX controls, Web page authors can extend the kinds of content
that can be displayed on a Web page. They can also enhance their Web pages
with sophisticated formatting features, animation, and embedded programs that
perform operations such as background downloading. ActiveX controls don't
need to be installed beforehand — they can be downloaded when a user first
opens a Web page. Microsoft Internet Explorer version 3.0 has builtin support
for Web pages that contain ActiveX controls. To use a Web page that contains
ActiveX controls in Netscape Navigator version 3.0, you must use the NCompass
ScriptActive plugin.

Java Applets

By using the Java programming language, Web page authors can produce
applications called applets, which can perform functions similar to plugins and
ActiveX controls. To display or run a Java applet from a Web page, a Web
browser must be able to compile and run Java code. Microsoft Internet Explorer
version 3.0 and Netscape Navigator versions 2.0 and 3.0 can run Java applets.

Scripting Languages

Scripting languages are interpreted programming languages that Web page
authors can use to perform a variety of operations. They are often used in
conjunction with ActiveX controls or Java applets. Three common examples of
scripting languages are VBScript, JScript™, and JavaScript. To use a page that
contains scripting language code, a Web browser must be able to interpret the
code. Microsoft Internet Explorer version 3.0 can run both VBScript and JScript
code, as well as most JavaScript code. Netscape Navigator versions 2.0 and 3.0
can run JavaScript code. Netscape Navigator version 3.0 can run VBScript code
if you have the NCompass ScriptActive plugin installed.

In addition to scripting languages, there are a variety of serverside scripting
languages, such as CGI, PERL, and ActiveX Scripting that extend the
functionality of servers. In Microsoft Access, you can create Active Server Pages
(ASP) that use ActiveX Scripting to bind data to Web page controls. By using
Active Server Pages, your Web pages can perform many of the same functions
as Microsoft Access forms.

Microsoft Office 97/Visual Basic Programmer's Guide Page 365 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Intranets

If you install Internet server software, such as Microsoft Internet Information
Server, on servers connected by a local area network (LAN), you can use these
same Internet technologies to share data within an organization. Such a system
is called an intranet or internal Web. For example, your organization could post
human resources information for all employees on a Web page, or a project
team could post information about its members and provide hyperlinks to
important documentation about the project. All the features in Microsoft Office
that are designed for the Internet can also be used on an intranet. For more
information about Microsoft Internet Information Server, see
http://www.microsoft.com/ntserver/.

You can also set up a personal web server to test your Web application or to
publish smallscale intranet applications. If you are using Windows 95, you can
install Microsoft Personal Web Server. If you are using Windows NT Workstation
version 4.0, you can install Microsoft Peer Web Services. For more information
about Personal Web Server or Peer Web Services, see "Setting Up a Personal
Web Server" later in this chapter.

Working with Hyperlinks

In all Microsoft Office 97 applications, you can create hyperlinks to display and
run standard Internet content. Additionally, in all Office applications except
Outlook, you can create hyperlinks to move between Microsoft Word documents,
Microsoft Excel workbooks, Microsoft PowerPoint presentations, and Microsoft
Access databases that are stored on a local hard disk or on a LAN. You don't
need Internet connections or Web servers to use hyperlinks to move between
Office documents or files. You can use both kinds of hyperlinks in the same
application.

A hyperlink to a Microsoft Office document can also go to a specific location or
object within another document or the current document. The following table
lists the objects that a hyperlink can go to within each Microsoft Office
application.

When you follow a hyperlink, either by clicking it or by using the Follow or

Application Object

Microsoft Access A table in Datasheet view.A query in Datasheet
view.A form in Form view or Datasheet view,
depending on the form's DefaultView property
setting.A report in Print Preview.A macro.
Using a hyperlink to go to a macro runs the
macro.A module.

Microsoft Excel A worksheet.A specified range of cells in a
worksheet.A named range of cells in a
worksheet.

Microsoft PowerPoint A slide.

Microsoft Word A bookmark.

Microsoft Office 97/Visual Basic Programmer's Guide Page 366 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

FollowHyperlink method, the Office application may open a cached copy of the
document, depending on the Internet settings in Control Panel. To view or
change these settings, doubleclick the Internet icon in Control Panel, then click
Settings on the Advanced tab. For more information about the Follow and
FollowHyperlink methods, see "The Follow Method" and "The FollowHyperlink
Method" later in this chapter.

Specifying a Hyperlink Address

When specifying a hyperlink address, you can use either of two forms:

� A valid URL that points to a resource on the Internet or an intranet.

� A path on a local hard disk, or a path on a LAN.

Specifying a URL as a Hyperlink Address

To create a hyperlink that goes to a Web page or other Internet content, you
must enter a valid URL as the hyperlink address. You can enter a URL that
points to any Internet file type or resource supported by the browser or to an
ActiveX control, such as the WebBrowser control, that will be used to display or
run it. For example, the URL to the home page of the Microsoft Office Developer
Forum is:

http://www.microsoft.com/officedev/

When you enter a URL like the previous example that doesn't specify a
particular file name, be sure to include a slash mark (/) at the end of the
address. Although URLs that do not end in a slash mark generally work, they
require the server to perform additional operations that add to the overall
network load and slow down the opening of the hyperlink. When you specify a
file name at the end of a URL, you do not end the URL with a slash mark. For
example:

http://www.microsoft.com/default.asp

If your users have Microsoft Internet Explorer version 3.0 or if your application
uses the WebBrowser control, your application can open a Microsoft Excel
workbook, Word document, or PowerPoint presentation within the browser or
control. To do this, the corresponding Office application or viewer (Microsoft
Excel Viewer, Word Viewer, or PowerPoint Viewer) must also be installed on the
user's computer. In this case, a URL can point directly to an Office document on
a Web or intranet server. For example:

http://YourIntranetServer/YourWordDoc.doc

You can also open an Office document in Microsoft Internet Explorer version 3.0
or in the WebBrowser control directly from the standard file system, without
using a Web server. To do so, use the File protocol, as follows:

file://c:\my documents\sales.doc

Specifying a UNC or Standard Path as a Hyperlink Address

Microsoft Office 97/Visual Basic Programmer's Guide Page 367 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

To create a hyperlink that starts a Microsoft Office 97 application and opens one
of its documents from a LAN, enter a universal naming convention (UNC) path
as the hyperlink address. This ensures that the hyperlink continues to work if
the document or the application that contains the hyperlink is moved to another
computer. A UNC path starts with two backslashes (\\) and supplies the server
name, share name, and full path to the file. For example, a UNC path to a
Microsoft Excel workbook would be in the following format:

\\server\share\path\workbook.xls

You can also specify a network path that uses a mapped drive letter, such as
E:\path\workbook.xls. However, because the path is specific to that drive letter,
the hyperlink only works if the user's computer has the drive letter mapped to
the appropriate server and share. If you want to create a hyperlink that goes to
a file on a local drive, you can use a standard file path starting with a drive
letter, such as C:\path\workbook.xls. In this case, if the application is moved to
another computer, the hyperlink only works if the file specified in the address is
stored on the same drive and in the same folder on the new computer.

You can also enter a UNC or standard file path as a hyperlink address to open
any file type that is registered on the computer running your document or
application. For example, if Notepad is installed and registered to open text
(.txt) files, you could enter a UNC path to open a text file in the following
format:

\\server\share\path\filename.txt

Absolute vs. Relative Links

When you create a hyperlink, you can use a path based on either an absolute
link or a relative link. A path based on an absolute link points to a fixed file
location. Absolute links identify the destination of a hyperlink by its full address
such as C:\My Documents\Sales.doc or http:\\www.microsoft.com\default.htm.
Use an absolute link for hyperlinks to destinations that won't be moved or that
require a full path. For example, use absolute links in hyperlinks to other Web
sites, such as a list of your favorite Web sites.

A path based on a relative link points to a destination relative to the file the
hyperlink is located in. When the first part of the path is shared by both the file
that contains the hyperlink and the destination file, that part is called a
hyperlink base. For example, if the path to the file that contains the hyperlink is
C:\My Documents\Databases and the path to the destination file is
C:\My Documents\Workbooks, then C:\My Documents is the hyperlink base.
The hyperlink base address is automatically added to the beginning of the path
for all relative links. You can specify the hyperlink base on the Summary tab of
the document's property sheet. To open a document's property sheet in
Microsoft Excel, Word, or PowerPoint, click Properties on the File menu. To
open the property sheet for a Microsoft Access database, click Database
Properties on the File menu.

When a hyperlink uses a path based on a relative link, you can move the file
that contains the hyperlink and the destination file without breaking the
hyperlink if you move the destination file to an identically named location. For
example, if you set the hyperlink base to C:\My Documents and then create a

Microsoft Office 97/Visual Basic Programmer's Guide Page 368 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

relative link to a document in C:\My Documents\Workbooks, and you move the
document that contains the relative link to a new computer, you must copy the
destination file into an identically named folder in C:\My Documents on the new
computer. Alternatively, you can move the destination file to a folder named
Workbooks within another folder (for example, D:\Applications), and then open
the document that contains the relative link and update the hyperlink base to
the new folder's name.

If you save a document or database object that contains relative links as an
HTML document, the hyperlink base is omitted from the anchor tags created for
those relative links. For example, suppose you create a relative link to a
database called Names.mdb in C:\My Documents\Databases, and set the
hyperlink base to C:\My Documents. When you save the document as an HTML
document, the anchor tag created is . To
keep the hyperlink from breaking in the HTML document, you must create a
Databases folder in the folder that contains the HTML document on the HTTP
server, and then copy the Names.mdb database into that folder.

Using Objects and Collections to Work with
Hyperlinks

All Office 97 applications except Outlook provide objects and collections that
you can use to work with hyperlinks in Visual Basic code. Although there are a
great number of similarities across each application, in some cases the objects
and collections that hyperlinks are associated with differ slightly in each Office
application.

To work with hyperlinks in Visual Basic code, you use the Hyperlink object. In
all Office 97 applications except Microsoft Access, the Hyperlink object is a
member of the Hyperlinks collection. In Microsoft Access, the Hyperlink object
is a member of the Controls collection. The objects that can contain a
Hyperlinks collection differ for each application. They are listed in the following
table.

The objects that can have a Hyperlink object associated with them differ for
each application. The following table summarizes which objects can have an
associated Hyperlink object.

Application
Objects that can contain a Hyperlinks
collection

Microsoft Word Document, Range, or Selection objects

Microsoft Excel Worksheet or Range objects

Microsoft PowerPoint Slide or Master objects

Microsoft Access None. Microsoft Access doesn't have a
Hyperlinks collection. All Hyperlink objects
are members of the Controls collection. In
addition, you can have a set of records that
contains fields with the Hyperlink data type
and use Visual Basic to work with the records
as if they were a collection.

Microsoft Office 97/Visual Basic Programmer's Guide Page 369 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Adding New Hyperlink Objects to the Hyperlinks Collection

In Microsoft Excel and Word, use the Add method to create a Hyperlink object
and add it to the Hyperlinks collection. To create a hyperlink with the Add
method, use the following syntax:

object.Add(anchor, address, subaddress)

The following table describes the arguments of the Add method.

Microsoft Word Examples

In Word, you can use the Add method to add a hyperlink to either a Range
object (a range or selection of text), a Shape object (a graphic object), or an
InlineShape object (a graphic object within a line of text).

Creating a Hyperlink for a Microsoft Word Range Object

The following example inserts the text "Microsoft Web Site" at the beginning of
the active document, selects the inserted text, and then adds a hyperlink to the
text that goes to the Microsoft home page at http://www.microsoft.com/.

Sub AddHyperlinkRange()
Dim r As Range

Set r = ActiveDocument.Range(Start := 0, End := 0)
r.InsertBefore "Microsoft Web Site"
Selection.MoveRight Unit := wdWord, Count := 3, Extend := wdE
ActiveDocument.Hyperlinks.Add Anchor := Selection.Range, _

Address := "http://www.microsoft.com/"

Application
Objects that can have a Hyperlink object
associated with them

Microsoft Word Shape, InlineShape, Selection, or Range
objects

Microsoft Excel Shape, Selection, or Range objects

Microsoft PowerPoint Shape.ActionSettings or
TextRange.ActionSettings objects

Microsoft Access CommandButton, ComboBox, Image,
Label, ListBox, or TextBox objects

Argument Description

object Required. An expression that returns a
Hyperlink object.

anchor Required. The anchor for the hyperlink. Can be
either a Range or a Shape object.

address Required. The address of the hyperlink.

subaddress Optional. The subaddress of the hyperlink.

Microsoft Office 97/Visual Basic Programmer's Guide Page 370 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

End Sub

Creating a Hyperlink for a Microsoft Word Shape Object

The following example creates a beveled shape, adds the text "Microsoft Web
Site" to the shape, and then adds a hyperlink to the shape that goes to the
Microsoft home page at http://www.microsoft.com/.

Sub AddHyperlinkShape()
ActiveDocument.Shapes.AddShape(msoShapeBevel, 150, 150, 100,
With Selection

.ShapeRange.TextFrame.TextRange.Select

.Collapse

.TypeText Text:="Microsoft Web Site"

.ShapeRange.Select
End With
ActiveDocument.Hyperlinks.Add Anchor:=Selection.ShapeRange, _

Address:= "http://www.microsoft.com/"
End Sub

Creating a Hyperlink Associated with a Command Button

In addition to creating Hyperlink objects in Visual Basic code, you can create a
command button by using the user interface and then add code to the command
button's Click event procedure to make it follow a hyperlink. This doesn't create
a Hyperlink object so the hyperlink isn't available in the document's
Hyperlinks collection. To create a command button that follows a hyperlink in
Microsoft Excel, Word, and PowerPoint, use the following procedure.

To create a command button that follows a hyperlink

1. Rightclick the menu bar and then click Control Toolbox on the shortcut
menu.

2. In the toolbox, click the Command Button tool, and then click where you
want to place the command button.

3. Rightclick the command button, and then click Properties on the shortcut
menu.

4. In the Caption property box, enter the text you want on the button. Set
any other properties you want to control the button's appearance and
then close the Properties dialog box.

5. Rightclick the command button, and then click View Code. Enter a
procedure that uses the FollowHyperlink method in the button's Click
event. For example:

Private Sub CommandButton1_Click()
FollowHyperlink "http://www.microsoft.com/"

End Sub

Microsoft Office 97/Visual Basic Programmer's Guide Page 371 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

6. Save the code, and exit Design mode to test the button.

Note When using this method, the command button doesn't display blue
underlined text or the hand cursor when the mouse is over the button.

For more information about the FollowHyperlink method, see "The
FollowHyperlink Method" later in this chapter.

Microsoft Excel Examples

In Microsoft Excel, you can use the Add method to add a hyperlink to either a
Range object (a range of one or more cells) or a Shape object (a graphic).

Creating a Hyperlink for a Microsoft Excel Range Object

The following example adds the display text "MSN Web site" to cell A1 in the
first worksheet in the current workbook, and then adds a hyperlink to that range
that goes to the Web site at http://www.msn.com/.

Sub AddHyperlink_Range()
Dim wrk As Worksheet

Set wrk = ActiveWorkbook.Sheets(1)
wrk.Range("A1").Value = "MSN Web site"
wrk.Hyperlinks.Add Address := "http://www.msn.com/", _

Anchor := wrk.Range("A1")
End Sub

Creating a Hyperlink for a Microsoft Excel Shape Object

The following example adds a rounded rectangle labeled "Click Here" to the first
worksheet in the current workbook, and then adds a hyperlink to the rectangle
that goes to cell C6 on the first sheet of Book2.xls.

Sub AddHyperlink_Shape()
Dim wrk As Worksheet
Dim shp As Shape

Set wrk = ActiveWorkbook.Sheets(1)
Set shp = wrk.Shapes.AddShape(msoShapeRoundedRectangle, 50, 5
shp.Select
Selection.Characters.Text = "Click Here"
wrk.Hyperlinks.Add Anchor := shp, Address := "C:\My Documents

SubAddress := "Sheet1!C6"
End Sub

Microsoft PowerPoint Examples

PowerPoint doesn't use the Add method to create a new hyperlink. Instead, you
create a hyperlink by working with the ActionSettings collection of a Shape
object (a graphic) or a TextRange object (text associated with a Shape
object). A Shape or TextRange object can have two different hyperlinks
assigned to it: one that's followed when the user clicks the object during a slide
show, and another that's followed when the user passes the mouse pointer over
the object during a slide show.

Microsoft Office 97/Visual Basic Programmer's Guide Page 372 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

To specify which mouse action to work with, first use the ActionSettings
property to return the ActionSettings collection, then use ActionSettings
(index), where index is either ppMouseClick or ppMouseOver. Set the Action
property to ppActionHyperlink to specify that the action is a hyperlink. After a
hyperlink is created, it's available from the Hyperlinks collections for the
Shape, TextRange, and Slide objects.

Creating a Hyperlink for a Microsoft PowerPoint Shape Object

The following example adds a Custom action button with text that reads
"Microsoft.com" to the first slide in the active presentation, and then adds a
hyperlink to the button that goes to the Microsoft home page.

Sub AddHyperlinkButton()
Dim sld As Slide, shp As Shape

Set sld = ActivePresentation.Slides(1)
Set shp = sld.Shapes.AddShape(msoShapeActionButtonCustom, 50,
With shp.TextFrame

.TextRange.Text = "Microsoft.com"

.MarginBottom = 5

.MarginLeft = 5

.MarginRight = 5

.MarginTop = 5
End With
With shp.ActionSettings(ppMouseClick)

.Action = ppActionHyperlink

.Hyperlink.Address = "http://www.microsoft.com/"
End With

End Sub

Creating a Hyperlink for a Microsoft PowerPoint TextRange Object

The following example adds a rectangle to the first slide in the active
presentation, adds text to the rectangle, and then adds a hyperlink to the text.
This example defines a hyperlink for all the text in the text range. It is possible
to define more than one hyperlink within a text range for selected characters.

Sub AddHyperlinkText()
Dim sld As Slide, shp As Shape, txt As Text

Set sld = ActivePresentation.Slides(1)
Set shp = sld.Shapes.AddShape(msoShapeRectangle, 0, 0, 250, 1
shp.TextFrame.TextRange.Text = "Microsoft Web Site"
Set txt = shp.TextFrame.TextRange
With txt.ActionSettings(ppMouseClick)

.Action = ppActionHypertext

.Hyperlink.Address = "http://www.microsoft.com/"
End With

End Sub

Microsoft Access Example

Microsoft Access doesn't provide a Hyperlinks collection or use the Add
method to create a hyperlink on a form or report. Instead, you create hyperlinks
for label, command button, and image controls by setting either the

Microsoft Office 97/Visual Basic Programmer's Guide Page 373 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

HyperlinkAddress property or the HyperlinkSubAddress property, or both,
of the control.

Note You can also create a field with the Hyperlink data type to store
hyperlink addresses in a table, and then bind that field to a text box, list box, or
combo box on a form. For more information, see "Storing Hyperlinks in
Microsoft Access Tables" later in this chapter.

Creating a Hyperlink Control in Microsoft Access

The following example creates a new label on a form and then sets the
HyperlinkAddress and HyperlinkSubAddress properties to create a
hyperlink. When you create a hyperlink in Visual Basic, and you want it to be
colored and underlined, you must also explicitly set the ForeColor and
FontUnderline properties.

Sub CreateHyperlinkLabel(strForm As String, xPos As Integer, _
yPos As Integer, strCaption As String, Optional strAd
Optional strSubAddress As String)

Dim ctlLabel As Control

' Open form, hidden in Design view.
DoCmd.OpenForm strForm, acDesign,,,,acHidden

' Create label control with text specified by strCaption, at
' the position specified by xPos and yPos.
Set ctlLabel = CreateControl(strForm, acLabel, , "", _

strCaption, xPos, yPos)

' Set hyperlink address, text color, and underline.
With ctlLabel

.HyperlinkAddress = strAddress

.HyperlinkSubAddress = strSubAddress

.ForeColor = "1279872587"

.FontUnderline = True
End With

' Save form.
DoCmd.Save acForm, strForm

End Sub

To use this example to create a hyperlink, you must specify the form, position,
display text, and hyperlink address. For example, enter the following code into
the Debug window:

CreateHyperlinkLabel "Form1",100,100,"Microsoft Web Site","http://www

You can use similar code to create image and command button controls and set
properties to create a hyperlink.

Referring to Hyperlink Objects

Use the Hyperlink property to return a reference to a Hyperlink object. The
objects that can have a Hyperlink object associated with them differ somewhat
for each application.

Microsoft Office 97/Visual Basic Programmer's Guide Page 374 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Microsoft Word Example

Use the Hyperlink property to return the hyperlink for a shape. Note that a
shape can have only one hyperlink associated with it. The following example
follows the hyperlink associated with the first shape in the active document.

ActiveDocument.Shapes(1).Hyperlink.Follow

Selection and Range objects can have multiple Hyperlink objects associated
with them. For these objects, you must either loop through the object's
Hyperlinks collection or specify a member of the object's Hyperlinks collection
by using the Item method. The following example loops through the hyperlinks
in the current selection.

Dim H As Hyperlink, hLinks As Hyperlinks
Set hLinks = Selection.Hyperlinks

For Each H In hLinks
MsgBox H.Address

Next H

The following example displays the address of the first hyperlink in the first 20
characters of the current document in the Immediate window.

Debug.Print ActiveDocument.Range(0,20).Hyperlinks(1).Address

Microsoft Excel Example

Use the Hyperlink property to return the hyperlink for a shape. Note that a
shape can have only one hyperlink associated with it. The following example
follows the hyperlink associated with the first shape on the first worksheet.

Worksheets(1).Shapes(1).Hyperlink.Follow NewWindow:=True

Microsoft PowerPoint Example

As mentioned earlier in this chapter, a shape in PowerPoint can have up to two
different hyperlinks assigned to it: one that's followed when the user clicks the
shape during a slide show, and another that's followed when the user passes
the mouse pointer over the shape during a slide show. To return a hyperlink for
a shape, you must first reference the appropriate member of the
ActionSettings collection (ppMouseOver or ppMouseClick), and then use
the Hyperlink property.

The following example displays the address for the mouseclick hyperlink of the
third shape on the first slide of the active presentation in the Immediate
window.

Debug.Print ActivePresentation.Slides(1).Shapes(3). _
ActionSettings(ppMouseClick).Hyperlink.Address

Microsoft Office 97/Visual Basic Programmer's Guide Page 375 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Microsoft Access Example

In Microsoft Access, you can use the Hyperlink property to return a reference
to the Hyperlink object associated with a CommandButton, ComboBox,
Image, Label, ListBox, or TextBox control.

The CreateHyperlink procedure in the following example sets the Address and
SubAddress properties for a label, image control, or command button to the
values passed to the procedure. The Address property setting is optional,
because a hyperlink to a database object in the current database uses only the
SubAddress property.

To try this example, create a form with two text box controls named txtAddress
and txtSubAddress, and a command button named cmdFollowLink. Then paste
the sample code into the Declarations section of the form's module. Display the
form in Form view, enter appropriate values in the txtAddress and
txtSubAddress text boxes, and click the cmdFollowLink button.

Private Sub cmdFollowLink_Click()
CreateHyperlink Me!cmdFollowLink, Me!txtSubAddress, Me!txtAdd

End Sub

Sub CreateHyperlink(ctlSelected As Control, txtSubAddress As TextBox,
Optional txtAddress As TextBox)
Dim hlk As Hyperlink

Select Case ctlSelected.ControlType
Case acLabel, acImage, acCommandButton

Set hlk = ctlSelected.Hyperlink
With hlk

If Not IsMissing(txtAddress) Then
.Address = txtAddress

Else
.Address = ""

End If
.SubAddress = txtSubAddress
.Follow
.Address = ""
.SubAddress = ""

End With
Case Else

MsgBox "The control '" & ctlSelected.Name & "
End Select

End Sub

Referring to a Hyperlink Object by Its Position in the
Hyperlinks Collection

Use the Item method (or the Item property in Microsoft Excel) of the
Hyperlinks collection to return a single Hyperlink object based on its position
in the collection. The first object in the collection has an Item value of 1. The
Item method is the default member of the Hyperlinks collection, so you can
refer to the Item method in either of the following ways:

Hyperlinks.Item(1)
Hyperlinks(1)

Microsoft Office 97/Visual Basic Programmer's Guide Page 376 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Microsoft Word Example

The following example follows the first hyperlink in the selection.

If Selection.Hyperlinks.Count >= 1 Then
Selection.Hyperlinks(1).Follow

End If

Note The Count property for the Hyperlinks collection of a Selection object
returns the number of items in the main story only. To count items in other
stories, specify the story in the StoryRanges collection. For example, to count all
of the hyperlinks in the primary footer story you can use the following code.
ActiveDocument.StoryRanges(wdPrimaryFooterStory).Hyperlinks.Count.

Microsoft Excel Example

The following example uses the Follow method to activate the second hyperlink
in the range of cells from E5 to E8.

Worksheets(1).Range("E5:E8").Hyperlinks(2).Follow

Microsoft PowerPoint Example

The following example sets the Address property of the second hyperlink on
the first slide in the current PowerPoint presentation.

ActivePresentation.Slides(1).Hyperlinks(2).Address = "C:\New\Newsales

Looping Through the Hyperlinks Collection

You can use the Hyperlinks collection in Microsoft Excel, Word, and PowerPoint
to loop through the set of Hyperlink objects associated with an object. In
Microsoft Access, you can loop through the Controls collection or a set of
records to work with the hyperlinks in your application.

The following examples perform operations on a Hyperlinks collection that
contains existing Hyperlink objects. In the Microsoft Excel, Word, and
PowerPoint examples that follow, the object that contains the Hyperlinks
collection is specific to the application. However, you can modify each example
to run in another application by referring to the appropriate object. Because the
Microsoft Access examples use the Controls collection or a set of records
instead of the Hyperlinks collection, you can only use them in Microsoft Access.

Microsoft Word Example

If the active document includes hyperlinks, this example inserts a list of the
hyperlink destinations at the end of the document.

Dim hLink As Hyperlink

Microsoft Office 97/Visual Basic Programmer's Guide Page 377 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Set myRange = ActiveDocument.Range(Start:=ActiveDocument.Content.End
Count = 0
For Each hLink In ActiveDocument.Hyperlinks

Count = Count + 1
With myRange

.InsertAfter "Hyperlink #" & Count & vbTab

.InsertAfter hLink.Address

.InsertParagraphAfter
End With

Next hLink

Microsoft Excel Example

The following example updates all hyperlinks on the first worksheet in the active
workbook that have the specified address.

Dim hLink As Hyperlink

For Each hLink in ActiveWorkbook.Sheets(1).Hyperlinks
If LCase(hLink.Address) = "C:\Current Work\Sales.ppt" Then

hLink.Address = "C:\New\Newsales.ppt"
End If

Next hLink

Note In Word, you can use the Hyperlinks collection to access hyperlinks
created by inserting a HYPERLINK field. In Microsoft Excel, however, you cannot
use the Hyperlinks collection to access hyperlinks created by entering a formula
using the HYPERLINK function.

Microsoft PowerPoint Example

The following example updates an outdated Internet address for all hyperlinks
in the active presentation.

Dim hLink As Hyperlink
Dim S As Slide

oldAddr = InputBox("Old internet address")
newAddr = InputBox("New internet address")
For Each S In ActivePresentation.Slides

For Each hLink In s.Hyperlinks
If LCase(hLink.Address) = Lcase(oldAddr) Then hLink.A

Next hLink
Next S

Microsoft Access Examples

Microsoft Access doesn't support the Hyperlinks collection, but you can loop
through the Controls collection on a form or report to work with the hyperlinks
associated with any control on the form or report. The following procedure
displays the name and hyperlink address values for controls that contain
hyperlinks in the Debug window.

Sub ListHyperlinks(strForm As String)
Dim Frm As Form
Dim Ctl As Control

Microsoft Office 97/Visual Basic Programmer's Guide Page 378 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

DoCmd.OpenForm strForm, acDesign, , , , acHidden
Set Frm = Forms(strForm)

' Ignore controls without hyperlinks.
On Error Resume Next

For Each Ctl In Frm.Controls
If Not (Ctl.ControlType = acTextBox) Then
Debug.Print "Control:" & Ctl.Name & vbCrLf & _

"Address:" & Ctl.Hyperlink.Address & vbCrLf &
"Subaddress:" & Ctl.Hyperlink.SubAddress & vb

Else
Debug.Print "Control:" & Ctl.Name & vbCrLf & _

"Text box control bound to Hyperlink field "
Ctl.ControlSource & vbCrLf

End If
Next Ctl
Frm.Close

End Sub

In addition to creating Hyperlink objects that belong to the Controls collection
of forms and reports, you can have a set of records that contains fields with the
Hyperlink data type and use Visual Basic to work with the records as if they
were a collection. For example, you can loop through the records in a table to
work with the properties of a field. The following procedure works with the
Suppliers table in the Northwind sample database. If a field is a Hyperlink field,
the procedure loops through all the records in the table. If a field is not null
(empty), it displays the record number, field name, and displayed value in the
Debug window.

Sub HyperlinkRecordset()
Dim dbs As Database
Dim rstSuppliers As Recordset
Dim fldField As Field

' Return reference to current database.
Set dbs = CurrentDb
' Create dynaset-type Recordset object.
Set rstSuppliers = dbs.OpenRecordset("Suppliers", dbOpenDynas

' Print displayed value for fields containing hyperlinks.
For Each fldField In rstSuppliers.Fields

If (fldField.Attributes And dbHyperlinkField) Then
With rstSuppliers

Do While Not .EOF
If Not IsNull(fldField.Value)

Debug.Print rstSuppli
fldField.Name & " " &
HyperlinkPart(fldFiel

End If
.MoveNext
Loop

.MoveFirst
End With

End If
Next fldField
' Free all object variables.
rstSuppliers.Close
Set dbs = Nothing

End Sub

Microsoft Office 97/Visual Basic Programmer's Guide Page 379 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

For more information about Hyperlink fields, see "Storing Hyperlinks in Microsoft
Access Tables" later in this chapter.

Using Methods and Properties to Work with
Hyperlinks

The following table summarizes the methods and properties you can use to work
with hyperlinks in Visual Basic.

Method or property name Description

Hyperlink property Returns a reference to a hyperlink object in
code.

Follow method Follows a hyperlink defined by an existing
Hyperlink object. The Follow method has the
same effect as clicking the hyperlink.

FollowHyperlink method Follows a hyperlink address specified in code or
passed to the method from a text box. For
example, you can prompt a user to type a
hyperlink address in a dialog box or form, and
then use the FollowHyperlink method to go
to that address.

ExtraInfoRequired property
(Word only)

A read-only property that returns True if extra
information is required to resolve the specified
hyperlink. You can specify extra information,
such as a file name or a query string, by using
the extrainfo argument with the Follow or
FollowHyperlink methods.

AddToFavorites method Adds a shortcut to the Favorites folder. The
AddToFavorites method can reference a
Hyperlink object or the current document
(Microsoft Access database, Microsoft Excel
workbook, Microsoft PowerPoint presentation,
or Microsoft Word document).

Address property Returns the address of the specified hyperlink.
This property is read/write, except in Word,
where it is read-only.

Subaddress property Returns a named location in the destination of
the specified hyperlink. The named location can
be a bookmark (Microsoft Word), a named cell
or cell reference (Microsoft Excel), a database
object (Microsoft Access), or a slide number
(Microsoft PowerPoint). This property is
read/write, except in Word, where it is read-
only.

Microsoft Office 97/Visual Basic Programmer's Guide Page 380 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

For more information about these methods and properties, search Help in the
appropriate application for the name of the method or property.

The Follow Method

The Follow method follows a hyperlink defined by an existing Hyperlink
object, and has the same effect as clicking the hyperlink. The Follow method
downloads the document or Web page specified by the hyperlink address
associated with a Hyperlink object and opens it in the appropriate application.
If the hyperlink refers to a file system path or uses the File protocol, the Follow
method opens the document instead of downloading it.

The syntax for the Follow method is:

expression.Follow(newwindow, addhistory, extrainfo, method, headerinfo)

The following table describes the arguments of the Follow method.

Type property (Microsoft Excel,
Word, and PowerPoint only)

Returns the type of object the hyperlink is
associated with. Can be one of the following
constants:

msoHyperlinkInlineShape (Word only)
msoHyperlinkRange
msoHyperlinkShape

HyperlinkAddress property
(Microsoft Access only)

Sets or returns the address of a hyperlink for a
label, image control, or command button. The
HyperlinkAddress property is equivalent to
setting or returning the Address property for
the control in Visual Basic; for example,
object.HyperlinkAddress is equivalent to
object.Hyperlink.Address. You can also set
the HyperlinkAddress property in the
control's property sheet.

HyperlinkSubAddress
property(Microsoft Access only)

Sets or returns the location within the Office
document or object specified by the
HyperlinkAddress property. When no
HyperlinkAddress property is specified,
HyperlinkSubAddress specifies a database
object in the current database. The
HyperlinkSubAddress property is equivalent
to setting or returning the SubAddress
property for the control in Visual Basic; for
example, object.HyperlinkSubAddress is
equivalent to object.Hyperlink.SubAddress.
You can also set the HyperlinkSubAddress
property in the control's property sheet.

Microsoft Office 97/Visual Basic Programmer's Guide Page 381 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

For the method argument of the Follow method, you can specify one of the
constants described in the following table.

Argument Description

expression Required. An expression that returns a
Hyperlink object.

newwindow Optional. A Boolean value where True (– 1)
opens the document in a new window and
False (0) opens the document in the current
window. The default value is False.

addhistory Optional. A Boolean value where True (– 1)
adds the hyperlink to the History folder and
False (0) doesn't add the hyperlink to the
History folder. The default value is True.

extrainfo Optional. A string or an array of Byte data that
specifies additional information for HTTP to use
to resolve the hyperlink. For example, you can
use the extrainfo argument to specify the
coordinates of an image map or the contents of
a form. The string is either appended or
posted, depending on the value of the method
argument. In Word, you can use the
ExtraInfoRequired property to determine
whether extra information is required.

method Optional. Specifies the way the extrainfo
argument is handled. You can set the method
argument to msoMethodGet or
msoMethodPost.

headerinfo Optional. A string that specifies header
information for the HTTP request. The default
value is a zero-length string (" "). You can
combine several header lines into a single
string by using the following syntax:

"string1" & vbCr & "string2"

The specified string is automatically converted
into ANSI characters. Note that the headerinfo
argument may overwrite default HTTP header
fields.

Constant Description

Microsoft Office 97/Visual Basic Programmer's Guide Page 382 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

For examples that illustrate uses of the Follow method, see the code samples
in previous sections of this chapter.

The FollowHyperlink Method

The FollowHyperlink method follows a hyperlink address specified in code or
passed to the method from a variable or object. For example, you can prompt a
user to type a hyperlink address in a dialog box, and then use the
FollowHyperlink method to go to that address. The FollowHyperlink method
downloads the document or Web page specified by the hyperlink address
associated with a Hyperlink object and opens it in the appropriate application.
If the address refers to a file system path or uses the File protocol, the
FollowHyperlink method opens the document instead of downloading it.

The syntax for the FollowHyperlink method is:

expression.FollowHyperlink(address, subaddress, newwindow, addhistory,
extrainfo, method, headerinfo)

The following table describes the arguments of the FollowHyperlink method.

msoMethodGet The extrainfo argument is a string that's
appended to the URL, separated by a question
mark, when you use the HTTP GET method
from an HTML form. For example, you can
submit a query to an HTTP server by using an
address in the following format:

http://www.web.com/cgi-bin/srch?
item1+item2

item1+item2 is the extra information that's
passed to the srch program on the HTTP
server.

msoMethodPost The extrainfo argument is posted to the server
as a string or a byte array when you use the
HTTP POST method. For example, data from a
form is typically submitted to an HTTP server
with a series of name/value pairs in the
following format:

name1=value1&name2=value2

This data can be submitted as either a string or
byte array, depending on what format the
program on the server has been programmed
to use. Use the HTTP POST method to submit
extra information if the program on the HTTP
server is reading the form's data from the
standard input stream (STDIN).

Microsoft Office 97/Visual Basic Programmer's Guide Page 383 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

For information about the newwindow, addhistory, extrainfo, method, and
headerinfo arguments, see the preceding section, "The Follow Method."

Microsoft Word Examples

This example follows the specified URL and displays the Microsoft home page in
a new window.

ActiveDocument.FollowHyperlink Address:="http://www.microsoft.com", _
NewWindow:=True, AddHistory:=True

This example opens the HTML document named Default.htm directly from the
local hard disk.

ActiveDocument.FollowHyperlink Address:="file://C:\Pages\Default.htm"

Microsoft Excel Example

This example follows the specified URL address and displays the names of all
the topics related to opera.

ActiveWorkbook.FollowHyperlink Address:="http://search.Yahoo.com/bin/
AddHistory:=False, Method:=msoMethodGet, ExtraInfo:="p=Opera"

Microsoft PowerPoint Example

This example loads the document at www.gohere.com in a new window and
adds it to the History folder.

Application.ActivePresentation.FollowHyperlink _
Address:="http://www.gohere.com", NewWindow:=True, AddToHisto

Argument Description

expression Required. An expression that returns one of the
following objects:

Microsoft Word Document objectMicrosoft
Excel Workbook objectMicrosoft PowerPoint
Presentation objectMicrosoft Access
Application object

address A string expression that evaluates to a valid
hyperlink address.

subaddress A string expression that evaluates to a named
location in the document specified by the
address argument. The default is a zero-length
string (" "). If no address is specified,
subaddress specifies a named location in the
document or database.

Microsoft Office 97/Visual Basic Programmer's Guide Page 384 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Microsoft Access Examples

The following function prompts a user for a hyperlink address and then follows
the hyperlink.

Function GetUserAddress() As Boolean
Dim strInput As String

On Error GoTo Error_GetUserAddress
strInput = InputBox("Enter a valid address")
Application.FollowHyperlink strInput, , True
GetUserAddress = True

Exit_GetUserAddress:
Exit Function

Error_GetUserAddress:
MsgBox Err & ": " & Err.Description
GetUserAddress = False
Resume Exit_GetUserAddress

End Function

You can call this function with a procedure such as the following.

Sub CallGetUserAddress()
If GetUserAddress = True Then

MsgBox "Successfully followed hyperlink."
Else

MsgBox "Could not follow hyperlink."
End If

End Sub

In Microsoft Access, you can also use the FollowHyperlink method to specify a
hyperlink for controls that don't support the HyperlinkAddress or
HyperlinkSubAddress properties (controls other than labels, image controls,
and command buttons, or text boxes bound to Hyperlink fields).

This example uses the FollowHyperlink method to add hyperlink behavior to
an unbound object frame control. Add the following code to the Click event of
an unbound object frame named OLEUnbound1 to start a Web browser and
open the specified hyperlink address when you click the image.

Note You can use similar code in Microsoft Excel, Word, or PowerPoint to
create a command button that follows a hyperlink. To do so, add a command
button by using the Control Toolbox, and then define a Click event procedure for
the button. For more information, see "Creating a Hyperlink Associated with a
Command Button" earlier in this chapter.

Private Sub OLEUnbound1_Click()
Dim strAddress As String

On Error GoTo Error_OLEUnbound1

' Set reference to hyperlink address.
strAddress = "http://www.microsoft.com/"

Microsoft Office 97/Visual Basic Programmer's Guide Page 385 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

' Follow hyperlink address.
Application.FollowHyperlink strAddress, , True

Exit_OLEUnbound1:
Exit Sub

Error_OLEUnbound1:
MsgBox Err & ": " & Err.Description
Resume Exit_OLEUnbound1

End Sub

Tip Using the FollowHyperlink method to add hyperlinks to controls that
don't support the HyperlinkAddress or HyperlinkSubAddress properties
doesn't provide any feedback to the user to indicate that the control can follow a
hyperlink. One way to inform a user that the control contains a hyperlink is to
set the control's ControlTipText property so that a text message appears when
the user rests the pointer on the control.

Handling Hyperlink Errors

If an error occurs when using the Follow or FollowHyperlink methods in
Visual Basic, an Automation error is displayed that contains only an error
number in both decimal and hexadecimal format. For example, if xyz.htm
doesn't exist, and you run the following code in Microsoft Access:

Application.FollowHyperlink "http://www.microsoft.com/xyz.htm"

the error message shown in the following illustration occurs.

This error number indicates that the requested item could not be found.

You can prevent these error messages from being displayed to users of your
application. To do so, check the Number property of the Err object against a
decimal value in the table that follows. Then handle the error by either
returning an appropriate message or performing a suitable action. If you want
to be certain that all errors are handled, write an error handler that traps the
entire set of error numbers.

Function GetUserAddress() As Boolean
Dim strInput As String
Dim lngErrNumber As Long

On Error GoTo Error_GetUserAddress
strInput = InputBox("Enter a valid address")
Application.FollowHyperlink strInput, , True
GetUserAddress = True

Microsoft Office 97/Visual Basic Programmer's Guide Page 386 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Exit_GetUserAddress:
Exit Function

Error_GetUserAddress:
' Set variable equal to error number.
lngErrNumber = Err.Number
' Check variable against all possible error numbers.
Select Case lngErrNumber

Case -2146697211
MsgBox "Cannot locate the Internet server or

Case -2146697210
MsgBox "The site reports that the item you re
& "could not be found. (HTTP/1.0 404)"

.

. ' Repeat for all possible error numbers.

.
End Select
GetUserAddress = False
Resume Exit_GetUserAddress

End Function

The following table lists the error numbers and descriptions for all errors that
can occur when using the Follow and FollowHyperlink methods.

Decimalerror
number

Hexadecimalerror
number Description

 – 2146697214, –
 2147221020 and –
 2147012891

0x800C0002, 0x800401E4
and 0x80072EE5

The address of this site is
not valid. Check the
address and try again.

 – 2146697213 0x800C0003 Cannot start an Internet
session.

 – 2146697212 and –
 2147012867

0x800C0004 and
0x80072EFD

Cannot connect to the
Internet server.

 – 2146697211 0x800C0005 Cannot locate the Internet
server or proxy server.

 – 2146697210 and –
 2147012868

0x800C0006 and
0x80072EFC

The site reports that the
item you requested could
not be found. (HTTP/1.0
404)

 – 2146697209 0x800C0007 The Internet site reports
that a connection was
established but the data is
not available.

 – 2146697208 0x800C0008 Cannot download the
information you requested.

 – 2146697207 0x800C0009 The item you requested
requires proper
authentication. (HTTP/1.0
401)

Microsoft Office 97/Visual Basic Programmer's Guide Page 387 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Note In PowerPoint, one error number is returned for all Follow or
FollowHyperlink method errors: – 2147467259 (0x80004005).

The AddToFavorites Method

The AddToFavorites method adds a shortcut to the Favorites folder in the
Windows program folder.

The syntax for the AddToFavorites method is:

expression.AddToFavorites

Expression is an expression that returns either a Hyperlink object or one of the
objects listed in the following table.

 – 2146697206 0x800C000A The Internet site cannot
return the object you
requested. (HTTP/1.0 403)

 – 2146697205 and –
 2147012894

0x800C000B and
0x80072EE2

The connection to this
Internet site took longer
than the allotted time.

 – 2146697204 0x800C000C The site reports that the
request is not valid.

 – 2146697203 and –
 2147012888

0x800C000D and
0x80072EE8

The required Internet
protocol is not installed on
your computer, or the
Internet address you
requested may not be
valid.

 – 2146697202 0x800C000E A security problem has
occurred.

 – 2146697201 and –
 2147221014

0x800C000F and
0x800401EA

Cannot open the specified
file.

 – 2146697200 0x800C0010 Cannot start the program
needed to open this file.

 – 2147221018 and –
 2147221164

0x800401E6 and
0x80040154

No program is registered to
open this file.

 – 2147467260 0x80004004 The hyperlink cannot be
followed to the destination.

Application Object

Microsoft Word Document

Microsoft Excel Workbook

Microsoft PowerPoint Presentation

Microsoft Access Application

Microsoft Office 97/Visual Basic Programmer's Guide Page 388 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

When referring to a Hyperlink object, the shortcut is the friendly name of the
document. The friendly name is determined by the text in the <TITLE> HTML
tag. If the document doesn't have a friendly name, the shortcut name is
resolved by the application. If there is an existing shortcut of the same name, it
is overwritten without notification.

Microsoft Word Examples

In Word, the shortcut created by the AddToFavorites method can refer to a
Document object or to a Hyperlink object.

The following example creates a shortcut to Sales.doc and adds it to the
Favorites folder. If Sales.doc isn't currently open, Word opens it from the
C:\My Documents folder.

Sub AddDocument()
Dim isOpen As Boolean, doc As Document

For Each doc In Documents
If LCase(doc.Name) = "Sales.doc" Then isOpen = True

Next doc
If isOpen <> True Then Documents.Open _

FileName:="C:\My Documents\Sales.doc"
Documents("Sales.doc").AddToFavorites

End Sub

To add an existing hyperlink in the document to the Favorites folder, you must
refer to the document's Hyperlinks collection. The following example adds all
of the hyperlinks in the document to the Favorites folder.

Sub AddHyperlinks()
Dim H As Hyperlink
Dim Hlinks As Hyperlinks

Set Hlinks = ActiveDocument.Hyperlinks

For Each H In Hlinks
H.AddToFavorites

Next H
End Sub

Microsoft Excel Examples

In Microsoft Excel, the shortcut created by the AddToFavorites method can
refer to a Workbook object or to a Hyperlink object.

To create a shortcut to the current workbook and add it to the Favorites folder,
use the following code.

ActiveWorkbook.AddToFavorites

To add an existing hyperlink in the current workbook to the Favorites folder, you
must refer to the workbook's Hyperlinks collection. For example, to create a

Microsoft Office 97/Visual Basic Programmer's Guide Page 389 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

shortcut to the address in the first hyperlink in the active workbook and add it
to the Favorites folder, use the following code.

ActiveWorkbook.Sheets(1).Hyperlinks(1).AddToFavorites

Microsoft PowerPoint Examples

In PowerPoint, the shortcut created by the AddToFavorites method can refer
to a Presentation object or to a Hyperlink object.

To add a shortcut to the current presentation, use the following code.

Application.ActivePresentation.AddToFavorites

To add a hyperlink in the current slide to the Favorites folder, you must refer to
the slide's Hyperlinks collection. The following example adds all of the
hyperlinks on the first slide of the current presentation to the Favorites folder.

Sub AddHyperlinks()
Dim H As Hyperlink
Dim Hlinks As Hyperlinks

Set Hlinks = ActivePresentation.Slides(1).Hyperlinks

For Each H In Hlinks
H.AddToFavorites

Next H
End Sub

Microsoft Access Examples

In Microsoft Access, the shortcut created by the AddToFavorites method can
refer to the Application object, which represents the current database, or to a
hyperlink associated with a Control object.

To create a shortcut to the current database and add it to the Favorites folder,
use the following code.

Application.AddToFavorites

To refer to a hyperlink associated with a Control object, you must use the
Hyperlink property to access the Hyperlink object. For example, to create a
shortcut to a hyperlink defined for a command button named Command0 on the
current form and add it to the Favorites folder, use the following code.

Me!Command0.Hyperlink.AddToFavorites

Storing Hyperlinks in Microsoft Access Tables

In Microsoft Access 97, you can create a field with the Hyperlink data type to
store hyperlink addresses in a table. You can follow a hyperlink stored in a

Microsoft Office 97/Visual Basic Programmer's Guide Page 390 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Microsoft Access table by clicking it in the table. However, typically the field is
bound to a text box, list box, or combo box control on a form. Like other bound
fields, as the user moves from record to record, the value in the control changes
to display the current record's hyperlink value. For example, you can use
hyperlinks in this way to create an application in which users can go to Web
pages, or to other content on the Internet or an intranet, from a predefined list
of addresses.

In addition to storing hyperlinks to Internet addresses, you can also use
hyperlinks in Microsoft Access to go to database objects and other Office
documents. For example, you could create a document management application
that uses a Hyperlink field to store paths to Word documents on a network.
Users of such an application could add records to track new documents, or click
the hyperlink in a previously added record to open the specified document.

To create a Hyperlink field, add a field in table Design view and set its
DataType property to Hyperlink. You can also create a Hyperlink field in table
Datasheet view by clicking Hyperlink Column on the Insert menu.

The Hyperlink Field Storage Format

In Microsoft Access, a Hyperlink field stores up to three pieces of information:
the displaytext, the address, and the subaddress. Each piece is separated by a
pound sign (#), in the following format:

displaytext#address#subaddress

The following table describes each piece of the Hyperlink field storage format.

Piece Description Required?

displaytext The text the user sees in the
Hyperlink field in a table, or in
a text box bound to the
Hyperlink field. You can set the
display text to any text string.
For example, you may want the
display text to be a descriptive
name for the Web site or object
specified by the address and
subaddress. If you do not
specify display text, Microsoft
Access displays the value of
address, or subaddress if
address is also not specified.

No

address A valid URL that points to a
page or file on the Internet or
an intranet, or the path to a file
on a local hard disk or LAN. If
you enter a path on a LAN, you
can omit a mapped drive letter
and use the universal naming
convention (UNC) format:
\\server\share\path\filename.

Yes, unless subaddress
points to an object in the
current database (.mdb)
file.

Microsoft Office 97/Visual Basic Programmer's Guide Page 391 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Each piece of the Hyperlink field storage format can be up to 2,000 characters.
The maximum length of the entire Hyperlink field value is 6,000 characters.

The following table gives examples of valid Hyperlink field values.

This prevents the path from
becoming invalid if the
database is later copied to
another computer's hard disk or
into a shared network folder.

subaddress The location within a file or
document; for example, a
database object, such as a form
or report. When referring to a
database object, the name of
the object should be preceded
by its type: Table, Query, Form,
Report, Macro, or Module. Other
possible values for subaddress
include a bookmark in a Word
document, a NAME anchor tag
in an HTML document, a
PowerPoint slide, or a cell in a
Microsoft Excel worksheet.

No

Hyperlink field value Goes to

Cajun Delights#http://www.
cajundelights.com/cajun.htm#

The Cajun Delights Web page. Only
the words "Cajun Delights" are
displayed in the field or control.

#http://www.cajundelights.com/cajun.htm# The Cajun Delights Web page. The
text "http://www.cajundelights.com
appears in the field or control beca
no display text is specified.

#http://www.cajundelights.
com/cajun.htm#Price

The HTML anchor with the NAME
attribute Price on the Cajun Deligh
Web page. The text
"http://www.cajundelights.
com/cajun.htm" is displayed.

Resume#c:\windows\personal\resume.doc# A Microsoft Word file named
Resume.doc located in the
\Windows\Personal folder. Only the
word "Resume" is displayed in the
field or control.

#c:\windows\personal\resume.doc# A Microsoft Word file named
Resume.doc located in the
\Windows\Personal folder. The text
"c:\windows\personal\resume.doc"
appears in the field or control beca
no display text is specified.

Microsoft Office 97/Visual Basic Programmer's Guide Page 392 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

You can enter data in a Hyperlink field in three ways: by using the Insert
Hyperlink dialog box (available through the Hyperlink command on the
Insert menu), by typing an address directly into a Hyperlink field, or by using
Data Access Objects (DAO) methods in Visual Basic code. When you use the
Insert Hyperlink dialog box or type directly into a Hyperlink field, Microsoft
Access adds the two pound signs (#) that delimit the parts of the hyperlink
data. When you use DAO methods, your code must include the two pound signs
to delimit the parts of the hyperlink data.

You can display the stored hyperlink format in a table by moving the insertion
point into a Hyperlink field using the keyboard, and then pressing F2. You can
edit the stored hyperlink in this form, but be careful to enter pound signs in the
appropriate locations. You can add or edit the displaytext part of a Hyperlink
field by rightclicking a hyperlink in a table, pointing to Hyperlink on the
shortcut menu, and then typing the display text in the Display Text box. You
can add or edit the address or subaddress part of a Hyperlink field by right-
clicking a hyperlink in a table, pointing to Hyperlink on the shortcut menu, and
then selecting Edit Hyperlink.

The HyperlinkPart Function

The HyperlinkPart function returns information about data stored in a
Hyperlink field. The syntax for the HyperlinkPart function is:

object.HyperlinkPart(hyperlink As Variant, part As Integer)

#c:\windows\personal\resume.
doc#Qualifications

The section in the Resume.doc Wo
file marked with the bookmark nam
Qualifications. The text
"c:\windows\personal\resume.doc"
displayed.

#\\databases\samples\northwind.mdb#Form
Suppliers

The Suppliers form in the Northwin
sample application located in the
Samples share on the Databases
server on a LAN (UNC format path)
The text
"\\databases\samples\northwind.m
is displayed.

Suppliers Form##Form Suppliers The Suppliers form in the current
database. The words "Suppliers Fo
are displayed in the field or control

#c:\windows\personal\1996 Sales.ppt#13 Slide 13 in the 1996 Sales PowerPo
presentation located in the
\Windows\Personal folder. The text
"c:\windows\personal\1996 Sales.p
is displayed.

#c:\windows\personal\budget.xls#Sheet1!
A2

The A2 cell in Sheet1 of the
Budget.xls file located in the
\Windows\Personal folder. The text
"c:\windows\personal\budget.xls"
displayed.

Microsoft Office 97/Visual Basic Programmer's Guide Page 393 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

The following table describes the arguments of the HyperlinkPart function.

You can set the part argument to the following constants.

Note If you use the HyperlinkPart function in an SQL statement or a query,
the part argument is required and you can't set it to the constants listed in the
preceding table — you must use the value instead.

You use the HyperlinkPart function to return one of three values stored in a
Hyperlink field (displaytext, address, or subaddress) or the displayed value. The
value returned depends on the setting of the part argument. If you don't use
the part argument, the HyperlinkPart function returns the value Microsoft
Access displays for the hyperlink (which corresponds to the acDisplayedValue
setting for the part argument).

When a value is provided in the displaytext part of a Hyperlink field, the value
displayed by Microsoft Access will be the same as the displaytext setting. When
there's no value in the displaytext part of a Hyperlink field, Microsoft Access
displays the value of the address or subaddress part of the Hyperlink field,
depending on which value is first present in the field.

The following table shows the values returned by the HyperlinkPart function
for data stored in a Hyperlink field.

Argument Description

object Optional. The Application object.

hyperlink Required. A Variant that represents the data
stored in a Hyperlink field.

part Optional. The value for the part argument is an
intrinsic constant that represents the
information you want returned by the
HyperlinkPart function.

Constant Value Description

acDisplayedValue 0 (Default) The underlined
text displayed in a
hyperlink.

acDisplayText 1 The displaytext part of a
Hyperlink field.

acAddress 2 The address part of a
Hyperlink field.

acSubAddress 3 The subaddress part of a
Hyperlink field.

Microsoft Office 97/Visual Basic Programmer's Guide Page 394 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

The following example uses all four of the part argument constants to display
information returned by the HyperlinkPart function for each record in a table
containing a Hyperlink field. To try this example, paste the
DisplayHyperlinkParts procedure into the Declarations section of a module. You
can call the DisplayHyperlinkParts procedure from the Debug window, passing
to it the name of a table that contains hyperlinks and the name of the field that
contains Hyperlink data, as shown in the following example.

DisplayHyperlinkParts "MyHyperlinkTableName", "MyHyperlinkFieldName"

Sub DisplayHyperlinkParts(strTable As String, strField As String)
Dim dbs As Database, rst As Recordset
Dim strMsg As String

Set dbs = CurrentDb
Set rst = dbs.OpenRecordset(strTable)

While Not rst.EOF ' For each record in table.
strMsg = "DisplayValue = " & HyperlinkPart(rst(strFie

& vbCrLf & "DisplayText = " & HyperlinkPart(r
& vbCrLf & "Address = " & HyperlinkPart(rst(s
& vbCrLf & "SubAddress = " & HyperlinkPart(rs

' Show parts returned by HyperlinkPart function.
MsgBox strMsg
rst.MoveNext

Wend
End Sub

When you use the HyperlinkPart function in a query, the part argument is
required. For example, the following SQL statement uses the HyperlinkPart
function to return information about data stored as a Hyperlink data type in the
URL field of the Links table:

Hyperlink field data
HyperlinkPart function returned
values

#http://www.microsoft.com/# acDisplayedValue:
http://www.microsoft.com/
acDisplayText: No value returned.
acAddress: http://www.microsoft.com/

acSubAddress: No value returned.

Microsoft#http://www.microsoft.com/# acDisplayedValue: Microsoft
acDisplayText: Microsoft
acAddress: http://www.microsoft.com/
acSubAddress: No value returned.

Customers##Form Customers acDisplayedValue: Customers
acDisplayText: Customers
acAddress: No value returned.
acSubAddress: Form Customers

##Form Customers acDisplayedValue: Form Customers
acDisplayText: No value returned.
acAddress: No value returned.
acSubAddress: Form Customers

Microsoft Office 97/Visual Basic Programmer's Guide Page 395 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

SELECT Links.URL, HyperlinkPart([URL],0)
AS Display, HyperlinkPart([URL],1)
AS Name, HyperlinkPart([URL],2)
AS Addr, HyperlinkPart([URL],3) AS SubAddr
FROM Links;

For another example of using the HyperlinkPart function, see "Displaying a
Document in the WebBrowser Control by Using a Hyperlink Stored in a Table"
later in this chapter.

Following a Hyperlink in a Text Box Bound to a Hyperlink
Field

When you use the Follow method in Microsoft Access, you don't need to know
the address specified by a control's HyperlinkAddress or
HyperlinkSubAddress property, or by the Hyperlink field that is bound to a
text box, list box, or combo box control. You only need to know the name of the
control that contains the hyperlink.

This example uses the Follow method to automatically open the Web page
specified in a text box bound to a Hyperlink field on a form whenever the user
moves to a new record. Add the following code to the OnCurrent event of a
form.

Private Sub Form_Current()
Dim txt As TextBox

On Error GoTo Error_Form1

' Set reference to the txtAddress text box bound to a Hyperli
Set txt = txtAddress

' Follow the hyperlink.
txt.Hyperlink.Follow

Exit_Form1:
Exit Sub

Error_Form1:
MsgBox Err & ": " & Err.Description
Resume Exit_Form1

End Sub

For another example of following a hyperlink stored in a table, see "Displaying a
Document in the WebBrowser Control by Using a Hyperlink Stored in a Table"
later in this chapter.

Creating a Hyperlink Field with Visual Basic

You can use Data Access Objects (DAO) code to create a field with the Hyperlink
field type. To do so, you must first create a field with the Memo data type and
then set the Attributes property of the field to dbHyperlinkField. The
following example creates a table named Hyperlinks that contains a Text field
and a Hyperlink field.

Microsoft Office 97/Visual Basic Programmer's Guide Page 396 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Sub CreateHyperlinkField()
Dim db As Database
Dim tbl As TableDef

Set db = CurrentDb()

Set tbl = db.CreateTableDef("Hyperlinks")

With tbl
.Fields.Append .CreateField("Text", dbText)
.Fields.Append .CreateField("Hyperlink", dbMemo)
.Fields("Hyperlink").Attributes = dbHyperlinkField

End With

db.TableDefs.Append tbl
RefreshDatabaseWindow

End Sub

Saving Documents and Objects as HTML

All of the Office 97 applications provide ways to save their data as HTML
documents. Microsoft Access and Word provide ways of doing so by using Visual
Basic.

Saving Microsoft Access Data as HTML Documents

Microsoft Access has five ways to save data from your database as HTML
documents:

Save data as static HTML documents You can create static HTML
documents from table, query, and form datasheets, and from reports. When you
save data as static HTML documents, the resulting pages reflect the state of the
data at the time it was saved, like a snapshot. If your data changes, you must
save the pages again to share the new data.

Save table, query, and form datasheets as IDC/HTX files You can save
your table, query, and form datasheets as Internet Database Connector/HTML
extension (IDC/HTX) files that generate HTML documents by querying a copy of
your database located on a Web server for current data.

Save forms and datasheets as Active Server Pages You can save your
forms as Active Server Pages (ASP) that emulate most of the functionality of
your forms and display data from a database located on a Web server. You can
also save table, query, and form datasheets as Active Server Pages that display
current data from a copy of your database located on a Web server.

Automate the publishing of dynamic and static HTML documents by
using the Publish to the Web Wizard You can use the Publish to the Web
Wizard to automate the process of saving multiple objects to any combination of
all three file types. In the Publish to the Web Wizard, IDC/HTX files and Active
Server Pages (ASP) files are collectively referred to as dynamic Web pages
because these file types create HTML documents by querying the database to
include current data.

Microsoft Office 97/Visual Basic Programmer's Guide Page 397 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Automate the publishing of dynamic and static HTML documents by
using the OutputTo method or action You can use the OutputTo method
in Visual Basic and the OutputTo action in macros to automate the process of
saving objects to any of the three file types.

The following sections discuss each of these options in more detail.

Saving Data as Static HTML Documents

With Microsoft Access, you can save table, query, and form datasheets, and
reports as static HTML documents.

To save a table, query, or form datasheet, or a report as a static HTML
document

1. In the Database window, click the table, query, form, or report you want
to save.

2. On the File menu, click Save As/Export.

3. In the Save As dialog box, click To an External File or Database, and
then click OK.

4. In the Save as type box, click HTML Documents (*.html; *.htm).

5. If you want to preserve formatting, select the Save Formatted check
box. To automatically open the resulting HTML document in your Web
browser, select the Autostart check box.

6. Specify the file name and location to save the file, and then click Export.

7. In the HTML Output Options dialog box, if you want Microsoft Access to
merge an HTML template with the resulting HTML document, specify that
as well, and then click OK.

For information about HTML templates, see "Using an HTML Template
When You Save Data as HTML Documents" later in this chapter.

You can also save data as static HTML documents by using the Publish to the
Web Wizard (available through the Save As HTML command on the File
menu), the OutputTo method in code, or the OutputTo action in macros. For
information about using the OutputTo method, see "Saving HTML Documents
by Using the OutputTo Method" later in this chapter.

When saving table, query, and form datasheets, Microsoft Access saves each
datasheet to a single HTML file. Microsoft Access saves reports as multiple HTML
documents, with one HTML file per printed page. To name each page, Microsoft
Access uses the name of the object and appends _Pagenn to the end of each
page's file name after the first page; for example, ProductList.htm,
ProductList_Page2.htm, ProductList_Page3.htm, and so on.

Saving Table, Query, and Form Datasheets as Static HTML Documents

Microsoft Office 97/Visual Basic Programmer's Guide Page 398 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

When you save a table, query, or form datasheet as an HTML document, the
HTML document generated is based on the table or query associated with the
datasheet, including the current setting of the OrderBy or Filter property of the
table or query. If the datasheet contains a parameter query, Microsoft Access
first prompts you for the parameter values, then exports the results.

If you select the Save Formatted check box, the HTML document contains an
HTML table that reflects as closely as possible the appearance of the datasheet
by using the appropriate HTML tags to specify color, font, and alignment. The
HTML document follows as closely as possible the page orientation and margins
of the datasheet. Whenever you want to use settings that are different from the
default orientation and margins for a datasheet, you must first open the
datasheet, and then use the Page Setup command (File menu) to change
settings before you save the datasheet as an HTML document.

If you select the Save Formatted check box, and a field has a Format or
InputMask property setting, those settings are reflected in the data in the
HTML document. For example, if a field's Format property is set to Currency,
the data in the HTML document is formatted with a dollar sign, a comma as the
thousand separator, and two decimal places; for example, $1,123.45.

Saving Reports as Static HTML Documents

When you save a report as HTML documents, the series of HTML documents
generated is based on the report's underlying table or query, including the
current OrderBy or Filter property settings of the table or query. If the report
contains a parameter query, Microsoft Access first prompts you for the
parameter values, then exports the results.

The HTML documents simulate as closely as possible the appearance of the
report by creating the appropriate HTML tags to retain attributes such as color,
font, and alignment. The proportions and layout of the actual report follow as
closely as possible the page orientation and margins set for the report. To
change the page orientation and margins, open the report in Print Preview, and
then use the Page Setup command to change settings before you save the
report as HTML documents. These settings are saved from session to session for
reports, so if you change them once, they will be used the next time you save
the form or report as HTML documents.

Most controls and features of a report, including subreports, are supported
except the following: lines, rectangles, OLE objects, and subforms. However,
you can use an HTML template file to include report header and footer images in
your output files. For an example, see the Nwindtem.htm template file in the
C:\Program Files\Microsoft Office\Office\Samples folder.

Navigation Controls When Saving Multiple HTML Documents Per Object

If you specify an HTML template that contains placeholders for navigation
controls when you save a report as multiple HTML documents, Microsoft Access
creates hyperlinks that the user can use to go to the first, previous, next, and
last pages in the publication. Where Microsoft Access places the hyperlinks
depends on where you locate the placeholders in the HTML template. For
information about HTML templates and placeholders, see "Using an HTML
Template When You Save Data as HTML Documents" later in this chapter.

Microsoft Office 97/Visual Basic Programmer's Guide Page 399 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

How Microsoft Access Saves Data Types in HTML Format

When you save data as static HTML documents, Microsoft Access saves values
from most data types as strings and formats them as closely as possible to their
appearance in the datasheet or report. All unformatted data types, except Text
and Memo, are saved with right alignment as the default. Text and Memo fields
are saved with left alignment by default.

There are two exceptions:

� OLE Object fields are not saved.

� Hyperlink field values are saved as hyperlinks in the HTML document. The
hyperlinks use HTML anchor tags with an HREF attribute, as described in
the following table.

Microsoft Access determines the displaytext, address, and subaddress values by
parsing the value stored in the Hyperlink field. For information about the
displaytext, address, and subaddress values, see "The Hyperlink Field Storage
Format" earlier in this chapter.

Using an HTML Template When You Save Data as HTML Documents

When you save data as HTML documents, you can use an HTML template to give
a consistent look to the HTML documents you create. For example, you can
include your company's logo, name, and address in the page's header, use the
background that is used throughout your company, or include standard text in
the header or footer of the HTML document.

Note You can use an HTML template when you save data as static HTML
documents, when you save datasheets as IDC/HTX files, when you save a form
or datasheet as an Active Server Page, and when you use the Publish to the
Web Wizard.

The HTML template can be any HTML document; that is, a text file that includes
HTML tags and userspecified text and references. In addition, the HTML
template can include placeholders that tell Microsoft Access where to insert
certain pieces of data in the HTML documents. When data is saved as HTML
documents, the placeholders are replaced with data. The following table
describes each of the placeholders that you can use in an HTML template.

If Anchor tag format

The hyperlink doesn't include a
subaddress

displaytext

The hyperlink includes a
subaddress

displaytext

Display text isn't specified address

Microsoft Office 97/Visual Basic Programmer's Guide Page 400 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

When you install Microsoft Access, sample HTML template files and graphics
files are installed in the Access subfolder of the Templates folder. The default
location of this folder is C:\Program Files\Microsoft Office\Templates\Access.

Saving Table, Query, and Form Datasheets as IDC/HTX Files

With Microsoft Access, you can save a table, query, or form datasheet as
Internet Database Connector/HTML extension (IDC/HTX) files that generate
HTML documents by querying a copy of your database located on a Web server.
In contrast to static HTML documents, which contain the data that was current
at the time the HTML document was created, IDC/HTX files generate an HTML
page with current data from your database; therefore, the HTML documents that
they generate are called dynamic.

To save a table, query, or form datasheet as IDC/HTX files

1. In the Database window, click the table, query, or form you want to save.

2. On the File menu, click Save As/Export.

3. In the Save As dialog box, click To an External File or Database, and
then click OK.

4. In the Save as type box, click Microsoft IIS 1-2 (*.htx;*.idc).

5. Specify the file name and location to save the files, and then click Export.

Placeholder Description Location

<!--AccessTemplate_Title--> The name of the object
being saved

Between <TITLE> and
</TITLE>

<!--AccessTemplate_Body--> The data or object
being saved

Between <BODY> and
</BODY>

<!--
AccessTemplate_FirstPage-->

An anchor tag to the
first page

Between <BODY> and
</BODY> or after
</BODY>

<!--
AccessTemplate_PreviousPage-
->

An anchor tag to the
previous page

Between <BODY> and
</BODY> or after
</BODY>

<!--
AccessTemplate_NextPage-->

An anchor tag to the
next page

Between <BODY> and
</BODY> or after
</BODY>

<!--AccessTemplate_LastPage-
->

An anchor tag to the
last page

Between <BODY> and
</BODY> or after
</BODY>

<!--
AccessTemplate_PageNumber-
->

The current page
number

Between <BODY> and
</BODY> or after
</BODY>

Microsoft Office 97/Visual Basic Programmer's Guide Page 401 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

6. In the HTX/IDC Output Options dialog box, specify:

� The data source name that will be used for the database.

� A user name and password, if required to open the database.

� An HTML template, if you want Microsoft Access to merge one with
the HTML extension (HTX) file.

Note You can specify any of these items later, except the HTML
template, by editing the resulting IDC file in a text editor such as
Notepad.

7. Click OK.

If the datasheet contains a parameter query, Microsoft Access simulates the
Enter Parameter Value dialog box by creating an additional HTML parameter
page that contains an HTML form text box control to enter the parameter value
and a button to run the query. You must display this HTML parameter page
before you display the datasheet HTML page in your Web application. If you use
the Publish to the Web Wizard and you specify a switchboard page, the HTML
parameter page is added to the switchboard page. When you export, Microsoft
Access runs the query and displays the Enter Parameter Value dialog box.
You don't need to enter values in this dialog box — just click OK to continue.

You can also save a table, query, or form datasheet as IDC/HTX files by using
the Publish to the Web Wizard (available through the Save As HTML command
on the File menu), the OutputTo method in code, or the OutputTo action in
macros. For information about using the OutputTo method, see "Saving HTML
Documents by Using the OutputTo Method" later in this chapter.

How the Internet Database Connector Works

When you save a table, form, or query datasheet as Internet Connector files,
Microsoft Access creates two files: an Internet Database Connector (IDC) file
and HTML extension (HTX) file. These files are used to generate a Web page
that displays current data from your database.

An IDC file contains the necessary information to connect to a specified Open
Database Connectivity (ODBC) data source and to run an SQL statement that
queries the database. The information needed to connect to the database
includes the data source name, and if userlevel security is established for the
database, the user name and password required to open the database. For
example, if you save the Current Product List query datasheet from the
Northwind sample application as IDC/HTX files, Microsoft Access creates the
following IDC file:

Datasource:Northwind
Template:Current Product List.htx
SQLStatement:SELECT [Product List].ProductID, [Product List].ProductN
+FROM Products AS [Product List]
+WHERE ((([Product List].Discontinued)=No))
+ORDER BY [Product List].ProductName;

Microsoft Office 97/Visual Basic Programmer's Guide Page 402 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Password:
Username:

An IDC file also contains the name and location of an HTML extension (HTX) file.
The HTX file is a template for the HTML document; it contains field merge codes
that indicate where the values returned by the SQL statement should be
inserted. For example, if you save the Current Product List query datasheet from
the Northwind sample application as IDC/HTX files, Microsoft Access creates the
following HTX file:

<HTML>
<TITLE>Current Product List</TITLE>
<BODY>
<TABLE BORDER=1 BGCOLOR=#ffffff>
<CAPTION>Current Product List</CAPTION>
<THEAD>
<TR>
<TD>Product ID</TD>
<TD>Product Name</TD>
</TR>
</THEAD>
<TBODY>
<%BeginDetail%>
<TR VALIGN=TOP>
<TD ALIGN=RIGHT><%ProductID%><
<TD><%ProductName%>
</FONT
</TR>
<%EndDetail%>
</TBODY>
<TFOOT></TFOOT>
</BODY>
</HTML>

Microsoft Access saves the HTX file to be used with an IDC file with the same
name as the IDC file, except with an .htx file name extension rather than an .idc
file name extension. After the database information has been merged into the
HTML document, it is returned to the Web browser.

If you open Current Product List.idc from a Microsoft Internet Information
Server that has an appropriately defined Northwind data source name (DSN),
the Web page shown in the following illustration is generated.

Microsoft Office 97/Visual Basic Programmer's Guide Page 403 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Note You can also reference an HTML template when you create IDC and HTX
files. An HTML template contains additional HTML code to enhance the
appearance of the resulting pages. If you specify an HTML template, it is
merged with the HTX file. For information about the format of an HTML
template, see "Using an HTML Template When You Save Data as HTML
Documents" earlier in this chapter.

Requirements for Using IDC/HTX Files

To use IDC/HTX files, your database and the IDC/HTX files must reside on a
computer running one of the following operating systems and Internet server
platforms:

� Microsoft Windows NT Server version 3.51 or 4.0 running Microsoft
Internet Information Server version 1.0, 2.0, or 3.0

� Microsoft Windows NT Workstation version 4.0 and Microsoft Peer Web
Services

� Microsoft Windows 95 and Microsoft Personal Web Server

Microsoft Internet Information Server, Microsoft Peer Web Services, and
Microsoft Personal Web Server use a component called the Internet Database
Connector (Httpodbc.dll) to generate dynamic Web pages from IDC/HTX files.

The Internet Database Connector component requires ODBC drivers to access a
database. To access a Microsoft Access database, the Microsoft Access Desktop
driver (Odbcjt32.dll) must be installed on your Web server. This driver is
installed when you install Microsoft Internet Information Server if you select the
ODBC Drivers And Administration check box during Setup.

However, the Microsoft Access Desktop driver isn't installed with Microsoft
Personal Web Server. If Microsoft Access is installed on the computer you are
using to run Microsoft Personal Web Server, and if you selected the driver when
you installed Microsoft Access, the driver is already available. If you don't have
Microsoft Access installed on the computer you are using to run Microsoft
Personal Web Server, you must install the Microsoft Access Desktop driver.

To install the Microsoft Access Desktop driver

1. Run the Microsoft Office or Microsoft Access Setup program.

2. If you are running Setup for the first time, click Custom.

If you are not running Setup for the first time, click Add/Remove.

Microsoft Office 97/Visual Basic Programmer's Guide Page 404 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

3. Select the Data Access Controls check box, and then click Change
Option.

Important The Microsoft Access check box must also be selected or
the driver will not be installed.

4. Select the Database Drivers check box, and then click Change Option.

5. Select the Microsoft Access Driver check box, and then click OK.

6. Click Continue, and follow the instructions in the remaining Setup dialog
boxes.

After the Microsoft Access Desktop driver is installed, you must create either a
system DSN or a file DSN that specifies the name and connection information
for each database you want to use on the server. You then specify that DSN
when you generate the IDC/HTX files.

For information about how to define a system DSN or a file DSN, search the
Microsoft Access Help index for "ODBC, setting up data sources." For more
information about Microsoft Internet Information Server, see the Microsoft
Internet Information Server Web site, located at
http://www.microsoft.com/infoserv/iisinfo.htm. For more information about
using IDC/HTX files, search the Microsoft Internet Information Server Help index
for "database connector."

Tip You can learn more about applications that use IDC/HTX files by reading
about the Job Forum application. For information about the Job Forum
application, see the Job Forum white paper, located at
http://www.microsoft.com/accessdev/accwhite/jobforpa.htm. For applications
that require many users to access the database simultaneously, you should
consider upsizing the Microsoft Access database backend server to Microsoft
SQL Server. For information about upsizing a Microsoft Access Web application
to Microsoft SQL Server, see
http://www.microsoft.com/accessdev/accwhite/upsizeweb.htm.

Saving Forms and Datasheets as Active Server Pages

With Microsoft Access, you can save a form as an Active Server Page (ASP) that
emulates much of the functionality of your form. When saving a form as an
Active Server Page, Microsoft Access saves most, but not all, controls on the
form as ActiveX controls that perform the same or similar functions. Microsoft
Access doesn't save or run Visual Basic code behind the form or controls. To
copy the layout of your form as closely as possible, Microsoft Access uses the
Microsoft HTML Layout control to position the controls on Active Server Pages.
The resulting page uses ActiveX Scripting and ActiveX Data Objects to connect
the control on the page to a copy of your database on an Internet server. For
information about the Microsoft HTML Layout control, see
http://www.microsoft.com/workshop/author/layout/layout.htm.

Users who open a form saved as an Active Server Page can browse records,
update or delete existing records, and add new records by using a Web browser.

Microsoft Office 97/Visual Basic Programmer's Guide Page 405 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

You can also save table, query, and form datasheets as Active Server Pages.
When you open a datasheet saved as an ASP, Microsoft Access displays current
data from a copy of your database located on an Internet server, much like
IDC/HTX files do. However, unlike IDC/HTX files, Active Server Pages require
only one file per datasheet. The ASP file uses scripting to establish a connection
to the database on the server, and contains information that it uses to format
the datasheet. Unlike a form saved as an Active Server Page, users can't update
existing records in or add new records to a datasheet saved as an Active Server
Page.

To save a form or datasheet as an Active Server Page

1. In the Database window, click the form or datasheet you want to save.

2. On the File menu, click Save As/Export.

3. In the Save As dialog box, click To an External File or Database, and
then click OK.

4. In the Save as type box, click Microsoft Active Server Page (*.asp).

5. Specify the file name and location to save the file, and then click Export.

6. In the Active Server Page Output Options dialog box, specify:

� The data source name that will be used for a copy of the current
database (required).

� A user name and password, if required to open the database.

� An HTML template, if you want Microsoft Access to merge one with
the Active Server Page.

For information about HTML templates, see "Using an HTML
Template When You Save Data as HTML Documents" earlier in this
chapter.

� The URL for the server where the Active Server Page will reside.

� The Session timeout setting, which determines how long a
connection to the server is maintained after the user stops working
with the Active Server Page (optional).

7. Click OK.

You can also save forms and datasheets as Active Server Pages by using the
Publish to the Web Wizard (available through the Save As HTML command on
the File menu), the OutputTo method in code, or the OutputTo action in
macros. For information about using the OutputTo method, see "Saving HTML
Documents by Using the OutputTo Method" later in this chapter.

Form Views Supported for Active Server Pages

Microsoft Office 97/Visual Basic Programmer's Guide Page 406 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

If the form you save as an Active Server Page has its DefaultView property set
to Single Form or Continuous Forms, the Active Server Page displays as a single
form, unless it is open in Datasheet view when you use the Save As/Export
command (File menu). If the form has its DefaultView property set to
Datasheet, the Active Server Page displays as a datasheet. Subforms always
display as datasheets, regardless of their DefaultView property setting. All
field data types are saved unformatted, that is, Format and InputMask
property settings aren't saved.

Control Types Supported for Active Server Pages

When Microsoft Access saves a form as an Active Server Page, it replaces
Microsoft Access controls with ActiveX controls, as described in the following
table.

Microsoft Access doesn't support the following controls when saving a form as
an Active Server Page:

� Tab control, and anything on a tab control

� Rectangle

� Line

Microsoft Access control ActiveX control

Text box Text box.

Text box control bound to a
Hyperlink field

Text box that displays the hyperlink text, but
the hyperlink can't be followed.

List box List box.

Combo box Combo box.

Label Label. If the label has HyperlinkAddress
and/or HyperlinkSubAddress properties set,
an HTML hyperlink is created for the label.

Command button Command button, but any code behind the
button isn't saved. If the command button has
HyperlinkAddress and/or
HyperlinkSubAddress properties set, an
HTML hyperlink is created for the button.

Option group Option group, but without a group frame.

Option button Option button.

Check box Check box.

Toggle button Toggle button.

ActiveX control ActiveX control, but any code behind the
control isn't saved.

Subform Subform as datasheet only.

Microsoft Office 97/Visual Basic Programmer's Guide Page 407 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

� Page break

� Unbound object frame

� Bound object frame

� Image control

� The background of a form set with the Picture property

Note You can simulate a rectangle or a line by using a Label control without a
caption.

Requirements for Using Active Server Pages

To display and use an Active Server Page, a copy of your database and Active
Server Pages must reside on a computer running one of the following operating
systems and Internet server platforms:

� Microsoft Windows NT Server version 3.51 or 4.0 running Microsoft
Internet Information Server version 3.0

� Microsoft Windows NT Workstation version 4.0 and Microsoft Peer Web
Services with the Active Server Pages components installed

� Microsoft Windows 95 and Microsoft Personal Web Server with the Active
Server Pages components installed

The Microsoft HTML Layout control must be installed on the computer opening
the Active Server Page. For more information about installing the Active Server
Pages components for Peer Web Services and Personal Web Server, see
http://www.microsoft.com/ntserver/. Active Server Pages also require the
Microsoft Access Desktop driver and a valid DSN to access a database. For
information about installing the Microsoft Access Desktop driver and defining
DSNs, see "Requirements for Using IDC/HTX Files" earlier in this chapter.

Using the Publish to the Web Wizard

With the Publish to the Web Wizard, you can publish a set of Microsoft Access
database objects to any combination of static HTML documents, IDC/HTX files,
or Active Server Pages (ASP). By using the wizard, you can:

� Pick any combination of tables, queries, forms, or reports to save.

� Specify an HTML template to use for the selected objects.

� Select any combination of static HTML documents, IDC/HTX files, or Active
Server Pages.

� Create a home page to tie together the Web pages you create.

Microsoft Office 97/Visual Basic Programmer's Guide Page 408 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

� Specify the folder where you save your files.

� Use the Web Publishing Wizard to move the files created by the Publish to
the Web Wizard to a Web server.

� Save the answers you provide the wizard as a Web publication profile, and
then select that profile the next time you use the wizard. This saves you
from having to answer the wizard's questions again.

To run the Publish to the Web Wizard, click Save As HTML on the File menu.
For more information about using the Publish to the Web Wizard, search the
Microsoft Access Help index for "Saving database objects, saving in
Internet/Web formats."

Saving HTML Documents by Using the OutputTo Method

You can use the OutputTo method to save Microsoft Access database objects in
the HTML formats described in the previous sections: static HTML documents,
IDC/HTX files, or Active Server Pages (ASP).

The syntax of the OutputTo method is:

DoCmd.OutputTo objecttype, objectname, outputformat, outputfile, autostart,
templatefile

The following table describes the arguments of the OutputTo method.

Argument Description

objecttype Required. Specifies the type of database object
you are going to output. You can use one of the
following constants for the objecttype
argument:

acOutputForm
acOutputQuery
acOutputReport
acOutputTable

objectname Optional. A string expression that's the valid
name of an object of the type specified in the
objecttype argument. If you want to output the
active object, specify the object's type for the
objecttype argument and leave this argument
blank.

If you run Visual Basic code that contains the
OutputTo method in a library database,
Microsoft Access looks for the object with this
name first in the library database, then in the
current database.

Microsoft Office 97/Visual Basic Programmer's Guide Page 409 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Microsoft Internet Information Server and Microsoft Active Server Pages formats
are available only for tables, queries, and forms, so if you specify acFormatIIS
or acFormatASP for the outputformat argument, you must specify
acOutputTable, acOutputQuery, or acOutputForm for the objecttype
argument.

You can leave an optional argument blank in the middle of the syntax, but you
must include the argument's comma. If you leave a trailing argument blank,
don't use a comma following the last argument you specify.

You can't specify the HTML template, data source name, user name and

outputformat Optional. Specifies whether to save the
database object as an HTML document,
IDC/HTX file, or Active Server Page. You can
use one of the following constants for the
outputformat argument:

acFormatHTML
acFormatIIS
acFormatASP

If you leave this argument blank, Microsoft
Access prompts you for the output format.

outputfile Optional. A string expression that's the full
name, including the path, of the file you want
to output the object to.

You can include the standard file name
extension (.asp, .htm, .html, or .htx,) for the
output format you select with the outputformat
argument, but it's not required. If you output
to IDC/HTX or ASP files, Microsoft Access
always creates files with the standard .htx
and .idc or .asp file name extensions.

If you leave this argument blank, Microsoft
Access prompts you for an output file name.

autostart Optional. Use True (– 1) to start a Web
browser immediately to open the static HTML
document specified by the outputfile argument.
Use False (0) if you don't want to start the
application. This argument is ignored for
IDC/HTX and ASP files.

If you leave this argument blank, Microsoft
Access uses the default value (False).

templatefile Optional. A string expression that's the full
name, including the path, of the file you want
to use as a template for an HTML, IDC/HTX, or
ASP file.

Microsoft Office 97/Visual Basic Programmer's Guide Page 410 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

password, server URL, or Session timeout setting when you use the OutputTo
method. Microsoft Access uses the values specified on the Hyperlinks/HTML
tab of the Options dialog box (Tools menu) by default. However, you can use
the SetOption method in your code to temporarily change these settings. For
information about using the SetOption method, search the Microsoft Access
Help index for "SetOption method."

Examples

The following example outputs the Employees table in static HTML document
format to the Employee.htm file and immediately opens the file in the default
Web browser.

DoCmd.OutputTo acOutputTable, "Employees", acFormatHTML, "Employee.ht

The following example outputs the Employees table in IDC/HTX format to two
files named Employee.htx and Employee.idc. It merges the Mc.htm template file
into the Employee.htx file.

DoCmd.OutputTo acOutputTable, "Employees", acFormatIIS, "Employee",,
"C:\Program Files\Microsoft Office\Templates\Access\Mc.htm"

The following example outputs the Products form in Active Server Page format
to the Products.asp file. It merges the Stones.htm template file into the
Products.asp file.

DoCmd.OutputTo acOutputFor
321m, "Products", acFormatASP, "Products",, _

"C:\Program Files\Microsoft Office\Templates\Access\Stones.ht

Saving Microsoft Word Documents as HTML
Documents

You can save an existing Word document to HTML format by using the Save As
command (File menu) or by using Visual Basic code. The following example
saves the active document as an HTML document.

Sub SaveAsHTML
Dim intFormat As Integer

intFormat = FileConverters("HTML").SaveFormat
myDocName = ActiveDocument.Name
pos = InStr(myDocName, ".")
If pos > 0 Then

myDocName = Left(myDocName, pos -1)
myDocName = myDocName & ".html"
ActiveDocument.SaveAs FileName:=myDocName, FileFormat

End If
End Sub

When you save an existing Word document to HTML format, formatting and
other items that aren't supported by HTML or the Word Web page authoring

Microsoft Office 97/Visual Basic Programmer's Guide Page 411 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

environment are removed from the file. For more information about what
happens when you save a Word document as a Web page, search Word Help.
Instead of saving existing documents as HTML, you may want to create new
HTML documents with Microsoft Word Web authoring tools.

Word 97 has many powerful features for creating HTML documents, such as the
following:

Word Editing and Formatting Features Take advantage of advanced Word
editing and formatting features — richtext formatting, spelling and grammar
checking, and automatic text correction — when you work with Word Web
authoring tools. When you use a Word Web template, you can easily create and
format popular Web page items — such as tables, bulleted or numbered lists,
and graphic objects — just as you can with a regular Word document.

Word Web Templates Use the Web Page Wizard or the Blank Web Page
template to create new Web pages. The Web Page Wizard gives you different
layouts and color themes to choose from, such as a personal home page, a table
of contents, a survey, or a registration form. To use the wizard or the template,
click New on the File menu, click the Web Pages tab, and then doubleclick
Web Page Wizard or Blank Web Page. There are several additional Web
templates that you can download from the Microsoft Word Web site at
http://www.microsoft.com/word/. When you download these templates, they
are installed in the same folder as the existing Web templates.

Hyperlinks, Bullets, and Horizontal Lines By using the Insert Hyperlink
button on the Standard toolbar, you can quickly create hyperlinks on your Web
page to link related information in different locations. The hyperlink text is
usually blue and underlined. You can also quickly create special graphical
bulleted lists and horizontal lines for your Web page. To add a new bullet for
selected text, click Bullets and Numbering on the Format menu, and then
select the bullet you want. To add the default bullet to selected text, click
Bullets on the Formatting toolbar. To add a new horizontal line, click
Horizontal Line on the Insert menu, and then select the line style you want.

Forms You can use forms to collect and present data on your Web page. For
example, you can publish a form that collects user feedback or registration
information. You can store the input data in a database or a text file for future
use. You can quickly create a form by selecting a sample form and then
modifying it for your needs by using the Forms toolbar. To select a sample
form, click New on the File menu, click the Web Pages tab, and then select
the sample form you want. To display the Control Toolbox, click Form Design
Mode on the Standard toolbar. Use the Web form tools just as you use the
regular Word form tools to insert form elements.

Saving Microsoft Excel Worksheets as HTML
Documents

To make your Microsoft Excel data available to users on your intranet or the
World Wide Web, use the Internet Assistant addin program to convert
worksheet data or charts to HTML Web pages (Save As HTML command, File
menu). Microsoft Excel doesn't support using Visual Basic to save data as HTML
documents.

Microsoft Office 97/Visual Basic Programmer's Guide Page 412 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Saving Microsoft PowerPoint Presentations as HTML
Documents

To make your Microsoft PowerPoint data available to users on your intranet or
the World Wide Web, use the Internet Assistant addin program to convert
presentations to HTML Web pages (Save As HTML command, File menu).
Microsoft PowerPoint doesn't support using Visual Basic to save data as HTML
documents.

Opening and Importing HTML Data

Each Office application provides features that you can use to open and import
HTML data. You can also use Office applications to open documents and files in
a variety formats on your company's intranet. If you have a connection to the
Internet, you can open or import data in most of these same formats on
Internet sites such as FTP and HTTP servers.

Note In all Office applications except Outlook, you can use Data Access
Objects (DAO) code in Visual Basic to access and manipulate data in a variety of
formats, including HTML. For more information about using DAO, see
Chapter 11, "Data Access Objects."

Opening HTML Data in Microsoft Word

To open HTML documents in Microsoft Word with Visual Basic, use the Open
method. By default, the Open method tries each available file converter until it
succeeds. For this reason, as long as the HTML Document converter is installed,
the following example opens an HTML document on a local drive.

Documents.Open "C:\My Documents\My Document.htm"

Similarly, you can specify a URL to open a file located on an HTTP server, as
follows.

Documents.Open "http://myserver.com/default.htm"

To improve performance, you can specify the file converter to use by referring
to it in the FileConverters collection, as follows.

Sub OpenHTML()
Dim intFormat As Integer

intFormat = FileConverters("HTML").OpenFormat
Documents.Open "http://myserver.com/default.htm", Format:=int

End Sub

Opening HTML Data in Microsoft Excel

To open HTML documents in Microsoft Excel with Visual Basic, use the Open

Microsoft Office 97/Visual Basic Programmer's Guide Page 413 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

method. You don't need to specify the file converter to use, because the Open
method tries each available file converter until it succeeds. The following
example opens an HTML document on a local drive.

Workbooks.Open "C:\My Documents\Product List.htm"

Similarly, you can specify a URL to open a file located on an HTTP server, as
follows.

Workbooks.Open "http://myserver.com/default.htm"

You can also get data from an intranet site or from HTTP, FTP, or Gopher sites
on the World Wide Web by running a Web query. To run a Web query, point to
Get External Data on the Data menu, and then click Run Web Query. For
more information about running Web queries, see
http://www.microsoft.com/excel/webquery/.

Opening HTML Data in Microsoft PowerPoint

To open HTML documents in PowerPoint with Visual Basic, use the Open
method. By default, the Open method tries each available file converter until it
succeeds. For this reason, as long as the HTML Document converter is installed,
the following line of code will open an HTML document on a local drive:

Presentations.Open "C:\My Documents\My Document.htm"

Similarly, you can specify a URL to open a file located on an HTTP server:

Presentations.Open "http://myserver.com/default.htm"

Importing HTML Data in Microsoft Access

With Microsoft Access, you can import or link data from HTML tables or other
data sources on an Internet server. For more information about importing,
exporting, and linking HTML data and other data formats on Internet servers,
see "Working with HTML Files" in Chapter 18 and "Importing, Linking, and
Exporting Data on the Internet" in Chapter 21 in Building Applications with
Microsoft Access 97.

Using the WebBrowser Control

The Microsoft WebBrowser control is an ActiveX control that you can use to
browse Web sites, view Web pages and other documents, and download data
located on the Internet from your applications. The WebBrowser control is useful
in situations where you don't want to disrupt the work flow in your application
by switching to a Web browser or other documentviewing application.

The WebBrowser control can display any Web page that Microsoft Internet
Explorer version 3.0 can display. For example, the WebBrowser control can

Microsoft Office 97/Visual Basic Programmer's Guide Page 414 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

display pages that include any of the following features:

� Standard HTML and most HTML enhancements, such as floating frames
and cascading style sheets

� Other ActiveX controls

� Most Netscape plugins

� Scripting, such as Microsoft Visual Basic Scripting Edition (VBScript) or
JavaScript

� Java applets

� Multimedia content, such as video and audio playback

� Threedimensional virtual worlds created with Virtual Reality Modeling
Language (VRML)

With the WebBrowser control, users of your application can browse sites on the
World Wide Web, as well as folders on a local hard disk and on a local area
network. Users can follow hyperlinks by clicking them or by typing a URL into a
text box. Also, the WebBrowser control maintains a history list that users can
browse through to view previously browsed sites, folders, and documents.

In addition to opening Web pages, both Microsoft Internet Explorer version 3.0
and the WebBrowser control can open any ActiveX document, which includes
most Office documents. For example, if Office is installed on a user's computer,
an application that uses the WebBrowser control can open and edit Microsoft
Excel workbooks, Word documents, and PowerPoint presentations from within
the control. Similarly, if Microsoft Excel Viewer, Word Viewer, or PowerPoint
Viewer is installed, users can open those documents within the WebBrowser
control, but they cannot edit them.

You can't open and edit a Microsoft Access database as an ActiveX document
within Microsoft Internet Explorer version 3.0 or the WebBrowser control, but a
Web page can contain a hyperlink to a Microsoft Access database. Clicking the
hyperlink downloads a copy of the database and starts a session of Microsoft
Access to open it. Additionally, if you have the server software that supports
Internet Database Connector/HTML extension (IDC/HTX) files or Active Server
Pages (ASP), you can create Web pages that act as a frontend to an ODBC data
source such as a Microsoft Access or Microsoft SQL Server database. For more
information about creating IDC/HTX or ASP files, see "Saving Microsoft Access
Data as HTML Documents" earlier in this chapter.

Adding the WebBrowser Control to a Form

Before you can use the WebBrowser control, you must have Microsoft Internet
Explorer version 3.0 or later installed.

If you purchased Microsoft Office 97 on CDROM, you can install Microsoft
Internet Explorer version 3.0 by running Msie30.exe from the Iexplore subfolder
in the ValuPack folder.

Microsoft Office 97/Visual Basic Programmer's Guide Page 415 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

If you prefer to install from the Web, you can download and install Microsoft
Internet Explorer version 3.0 from http://www.microsoft.com/ie/download/.

Once you have Microsoft Internet Explorer version 3.0 installed, the
WebBrowser control is automatically registered and is available in form Design
view (Microsoft Access) and in Design mode (Microsoft Excel, Word, and
PowerPoint).

To add the WebBrowser control to a document or form

1. In Microsoft Excel, Word, or PowerPoint, open the document or form. In
Microsoft Access, open the form in Design view.

2. In Microsoft Excel, Word, or PowerPoint, rightclick the menu bar and then
click Control Toolbox. In Microsoft Access, rightclick the menu bar and
then click Toolbox.

3. In the toolbox, click the More Controls tool.

A menu appears that lists all the registered ActiveX controls in your
system.

4. On the menu of ActiveX controls, click Microsoft WebBrowser Control.

5. On the document or form, click where you want to place the control.

6. Move and size the control to the area you want to display.

In Microsoft Excel, Word, and PowerPoint, you can also add the WebBrowser
control to UserForms created with the Visual Basic editor.

To add the WebBrowser control to a UserForm created with the Visual
Basic Editor

1. Open a Microsoft Excel, Word, or PowerPoint document.

2. On the Tools menu, point to Macro, and then click Visual Basic Editor.

This starts the Visual Basic Editor or switches to its window if it's already
open.

3. On the Insert menu, click UserForm.

A blank form is created and the toolbox is displayed.

4. Rightclick the toolbox, and then click Additional Controls.

The Additional Controls dialog box is displayed.

5. In the Available Controls box, select Microsoft WebBrowser Control, and
then click OK.

Microsoft Office 97/Visual Basic Programmer's Guide Page 416 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

A tool icon is added to the toolbox for the WebBrowser Control. You don't
need to repeat steps 4 and 5 the next time you use the toolbox.

6. Click the new tool, and then click the form where you want to place the
control.

For more information about UserForms, see Chapter 12, "ActiveX Controls and
Dialog Boxes."

Tip If the WebBrowser control can't display the full width or height of a Web
page or document, it automatically displays scroll bars. However, in most cases,
make the control wide enough to display the full width of a typical Web page so
that users of your application don't have to scroll horizontally.

Displaying Web Pages or Documents in the
WebBrowser Control

To display a Web page or document in the WebBrowser control, use the
Navigate method in Visual Basic. The syntax for the Navigate method is:

object.Navigate URL

Object is either the name of the WebBrowser control on your form or an object
variable that refers to it, and URL is a string expression that evaluates to a valid
URL or path. URL can refer to a Web page or other content on the Internet or an
intranet, as well as to an Office document, such as a Word document.

If URL refers to an Internet protocol and a location on the Internet, the
WebBrowser control must establish a connection before is can display the
document. If the computer running your application is connected to a proxy
server (a secure connection to the Internet through a LAN), or if it has a direct
connection to the Internet, the WebBrowser control downloads and displays the
Web page or other Internet content immediately. If the computer running your
application uses a modem and dialup connection to the Internet, and that
connection hasn't been established beforehand, the WebBrowser control
initiates the connection. For example, if the user's computer uses a modem and
The Microsoft Network to connect to the Internet, the Sign In dialog box is
displayed to establish the connection to the Internet before the WebBrowser
control can display Internet content.

If URL refers to an Internet protocol and a location on an intranet server, the
computer running your application must be connected to the intranet and have
permission to access that server.

If URL refers to a standard file system path on a local hard disk or LAN, the
WebBrowser control opens the document and displays it immediately. The
WebBrowser control can open Office documents (except Microsoft Access
databases), text files, and HTML documents that don't require features
supported only by an Internet/intranet server. For example, the WebBrowser
control can't open and run IDC/HTX files or ASP files from the standard file
system, but it can open HTML documents that contain only the HTML tags
supported by Microsoft Internet Explorer version 3.0.

Microsoft Office 97/Visual Basic Programmer's Guide Page 417 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Note If URL refers to a path in the standard file system that doesn't refer to a
file name (for example, C:\Windows\System\), the WebBrowser control displays
the file system itself, much like My Computer.

The examples and code in the following sections are specific to developing an
application that uses the WebBrowser control in Microsoft Access; however, in
most cases, you can apply the same basic principles and techniques to using the
WebBrowser control in applications developed with other Office applications.

Displaying a Document in the WebBrowser Control by Using
an Address in a Text Box

By using the WebBrowser control, you can create a Microsoft Access form that
performs most of the functions of Microsoft Internet Explorer version 3.0. For
example, the following illustration shows the Custom Browse form
(WebBrowseWeb) in the Developer Solutions sample application.

When a user types a valid URL in the text box at the top of the form (txtLinks)
and presses ENTER, the WebBrowser control (ActiveXCtl1) displays the Web
page or document. Pressing ENTER triggers the AfterUpdate event of the
txtLinks text box; the AfterUpdate event contains the following code, which
goes to the address specified in the URL that the user entered.

Private Sub txtLinks_AfterUpdate()
On Error Resume Next

' If the user has entered an address (URL) in this control,
' attempt to go to the address.
If Len(Me!txtLinks) > 0 Then

Me!ActiveXCtl1.Navigate Me!txtLinks
End If

Microsoft Office 97/Visual Basic Programmer's Guide Page 418 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

End Sub

Error handling is passed to the control itself because it displays the same error
messages displayed by Microsoft Internet Explorer version 3.0.

If you prefer to start navigation by clicking a command button instead pressing
ENTER, you can use similar code in the button's Click event.

The Home, Back, Forward, Refresh, and Search buttons on the Custom Browse
form use the corresponding GoHome, GoBack, GoForward, Refresh, and
GoSearch methods of the WebBrowser control. For information about how to
view brief descriptions about the properties, methods, and events of the
WebBrowser control, see "Viewing Descriptions of the Properties, Methods, and
Events of the WebBrowser Control" later in this chapter.

With the Save Location button on the Custom Browse form, you can save the
address and a description of the current document to the Links table in the
Developer Solutions sample application. When you click the Save Location
button, Microsoft Access checks to see if the URL has been saved previously,
and if not, uses the following statement to open the Save Location To Table
dialog box.

DoCmd.OpenForm "frmSaveURLDialog", acWindowNormal, , , acFormEdit, ac
ctlHyper.LocationName & ";" & ctlHyper.LocationURL

The last argument of this statement (ctlHyper.LocationName & ";" &
ctlHyper.LocationURL) sets the OpenArgs property to a concatenated string
that contains the two values returned by the LocationName and LocationURL
properties of the document currently displayed in the Custom Browse form.
When the Save Location To Table dialog box opens, code in its Load event
parses the OpenArgs property value back into two parts and displays them as
the default description and address. When the user clicks OK, the description
and address in the Save Location To Table dialog box form are saved in the
Hyperlink and Description fields in the Links table.

For more information about the Custom Browse form, open the Developer
Solutions sample application located in the Samples subfolder of your Office
folder. To view the Developer Solutions sample application, you must click
Custom when you install Microsoft Access and then choose to install all sample
databases.

Displaying a Document in the WebBrowser Control by Using
a Hyperlink Stored in a Table

By using the WebBrowser control, you can create a Microsoft Access form that
displays documents specified in hyperlinks stored in a table. For example, the
following illustration shows the Browse Saved Hyperlinks form
(WebBrowseTable) in the Developer Solutions sample application. You can use
the Browse Saved Hyperlinks form to browse addresses saved in the Links table.

Microsoft Office 97/Visual Basic Programmer's Guide Page 419 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

When a user clicks a record navigation button at the bottom of the form to
move to a new record, the following code in the form's Current event displays
the Web page or document whose address is stored in the current record.

Private Sub Form_Current()
Dim varFull As Variant, varDescription As Variant
Dim HyperlinkAddress As String, HyperlinkSubAddress As String
Dim msg1 As String, msg2 As String, rst As Recordset, strDisp

On Error Resume Next

Set rst = Me.RecordsetClone
rst.Bookmark = Me.Bookmark
varFull = rst!HyperLink

If IsNull(varFull) Then GoTo Current_Err
varDescription = rst!Description
Me!ActiveXCtl1.Navigate HyperlinkPart(varFull, acAddress)

If Err = 438 Then Exit Sub

gvarBookMark = Me.Bookmark

Current_Bye:
Exit Sub

Current_Err:

msg1 = "Invalid hyperlink address. Remove the record described as '"
msg2 = "' from the Links table or edit the hyperlink to supply a vali

MsgBox msg1 & rst!Description & msg2

Me.Bookmark = gvarBookMark
Exit Sub

End Sub

Microsoft Office 97/Visual Basic Programmer's Guide Page 420 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

This procedure uses the Navigate method of the WebBrowser control to display
the next hyperlink address. However, don't pass the contents of a Hyperlink
field directly to the Navigate method. If a user enters or edits data stored in a
Hyperlink field from a datasheet or form, it may contain up to three parts of
information separated by the pound sign (#). Even if the user doesn't enter all
three parts in the datasheet or form, Microsoft Access automatically stores
pound signs in the field. If there are pound signs in the Hyperlink field, passing
the data from the field directly to the Navigate method generates an error. To
handle this, the stored value is passed to the HyperlinkPart function to extract
just the address portion of the saved hyperlink, which is then passed to the
Navigate method. If navigation is successful, the form's Bookmark property
value is stored in a public variable. This public variable is used to return to the
last record if subsequent navigation fails.

Using code to save data in a Hyperlink field doesn't automatically save pound
signs in the field. To preserve the proper functioning of a Hyperlink field in other
contexts, you may want to write your code to save pound signs before and after
a hyperlink address. To see an example of how to do this, view the event
procedure set for the Click event of the Save Location button
(cmdSaveLocation) on the Custom Browse form.

Note You don't have to store addresses in a Hyperlink field if you don't need
users to be able to navigate to addresses by clicking them in datasheets or
forms, or if you don't need to save addresses as HTML anchor tags when saving
as HTML. As long as an address doesn't exceed 255 characters, you can store it
in a Text field. If an address exceeds 255 characters, you can store it in a Memo
field. In either case, you can pass the value stored in the field directly to the
Navigate method.

For more information about the Browse Saved Hyperlinks form, open the
Developer Solutions sample application located in the Samples subfolder of your
Office folder. For more information about the format of data stored in a
Hyperlink field, see "The Hyperlink Field Storage Format" earlier in this chapter.

Viewing Descriptions of the Properties, Methods, and
Events of the WebBrowser Control

Like builtin Office objects, the WebBrowser control has properties that your
application can set or read to determine the control's characteristics, methods
that your application can use to perform operations on the control, and events
your application can respond to. You can view brief descriptions of the
properties, methods, and events of the WebBrowser control by using the Object
Browser.

Important In order for these properties, methods, and events to appear in
the Object Browser, a reference must be set to the Microsoft Internet
Controls object library. To set this reference, open a module (Microsoft Access)
or open the Visual Basic Editor (Microsoft Excel, Word, or PowerPoint), click
References on the Tools menu, and select the Microsoft Internet Controls
check box in the Available References box.

To view descriptions of the WebBrowser control's methods, properties,
and events

Microsoft Office 97/Visual Basic Programmer's Guide Page 421 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

1. In Microsoft Excel, Word, or PowerPoint, open the Visual Basic Editor. In
Microsoft Access, open a module.

2. On the View menu, click Object Browser.

3. In the Project/Library box, click SHDocVw.

4. In the Classes box, click WebBrowser.

The Members Of box lists the methods, properties, and events associated
with the WebBrowser control.

For more information about the methods, properties, and events of the
WebBrowser control, see http://www.microsoft.com/intdev/sdk/docs/iexplore/.
If you purchased Microsoft Office 97 on CDROM, you can open a Help file named
Iexplore.hlp that contains this information in the \ValuPack\Access\WebHelp
folder on the CDROM.

Distributing the WebBrowser Control with Your
Application

Unlike most other ActiveX controls, you can't install the WebBrowser control by
itself. For an application that uses the WebBrowser control to work, Microsoft
Internet Explorer version 3.0 must also be installed on the computer. Microsoft
Internet Explorer version 3.0 can be distributed freely, and doesn't require the
payment of royalties or other licensing fees. For information about installing
Microsoft Internet Explorer version 3.0, see "Adding the WebBrowser Control to
a Form" earlier in this chapter.

Using the Internet Transfer Control

Microsoft Office 97, Developer Edition provides the Internet Transfer control
(Msinet.ocx), which you can use to connect to and retrieve files from any Web
site that uses either Hypertext Transfer Protocol (HTTP) or File Transfer Protocol
(FTP). For example, you could use the Internet Transfer control to:

� Add an FTP browser to any application.

� Create an application that automatically downloads files from a public FTP
site.

� Search a World Wide Web site for references to graphics and download
only the graphics.

� Retrieve specific pieces of information from a Web page.

Because HTTP and FTP work differently, the operations you can perform with the
Internet Transfer control depend on which protocol you are using. For example,
the GetHeader method only works with HTTP (HTML documents). However,
there are a few operations that you can perform with either protocol:

Microsoft Office 97/Visual Basic Programmer's Guide Page 422 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

� Set the AccessType property of the Internet Transfer control to a valid
proxy server.

� Use the OpenURL method with a valid URL.

� Use the Execute method with a valid URL and command appropriate to
the protocol and then use the GetChunk method to retrieve data from the
buffer.

Tip The Internet Transfer control automatically sets itself to the correct
protocol, as determined by the protocol portion of the URL. Therefore, when you
use the OpenURL or Execute method, you don't need set the Protocol
property.

Adding the Internet Transfer Control to a Form

In Microsoft Excel, Word, and PowerPoint, you can add the Internet Transfer
control to a UserForm you create with the Visual Basic Editor. Although the
Internet Transfer control is available in the toolbox in Microsoft Excel, Word, and
PowerPoint, you can't add the control directly to their documents. In Microsoft
Access, you can add the Internet Transfer control to a form in Design view. The
Internet Transfer control doesn't display when your application is running.

To add the Internet Transfer control to a Microsoft Excel, Word, or
PowerPoint UserForm created with the Visual Basic Editor

1. Open a Microsoft Excel, Word, or PowerPoint document.

2. On the Tools menu, point to Macro, and then click Visual Basic Editor.

This starts the Visual Basic Editor or switches to its window if it's already
open.

3. On the Insert menu, click UserForm.

A blank form is created and the toolbox is displayed.

4. Rightclick the toolbox, and then click Additional Controls.

The Additional Controls dialog box is displayed.

5. In the Available Controls box, select MSInet Control, version 5.0, and then
click OK.

A tool icon is added to the toolbox for the Internet Transfer control. You
don't need to repeat steps 4 and 5 the next time you use the toolbox.

6. Click the new tool, and then click the form where you want to place the
control.

By default, the new control is named Inetn, where n is some number.

Microsoft Office 97/Visual Basic Programmer's Guide Page 423 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

To add the Internet Transfer control to a Microsoft Access form

1. Open the form in Design view.

2. In the toolbox, click the More Controls tool.

A menu appears that lists all the registered ActiveX controls in your
system.

3. On the menu of ActiveX controls, click MSInet Control.

4. On the form, click where you want to place the control.

By default, the new control is named ActiveXctln, where n is some
number.

Setting the AccessType Property

In order to make any kind of connection to the Internet, you must determine
how your computer is connected to the Internet. If you are on an intranet you
will probably be connected to the Internet through a proxy server.

When using a proxy server, all computers on an intranet that need to connect to
the Internet must do so through the proxy server. By using a proxy server,
sometimes called a firewall, you can protect your local area network from being
accessed by others on the Internet. The proxy server acts as a oneway barrier
between your internal network and the Internet, preventing others on the
Internet from accessing confidential information on your internal network.

To determine the proxy server settings on your computer

Note The following steps apply only to computers running Windows 95 and
Windows NT Workstation version 4.0.

1. On the Taskbar of your computer, click Start, point to Settings, and
then click Control Panel.

2. Doubleclick the Internet icon.

3. In the Internet Properties dialog box, click the Connection tab.

4. If the Connect through a proxy server check box is selected, click
Settings.

5. The Proxy Settings dialog box shows the name of your intranet's proxy
server. If no proxy server is defined, contact your workgroup
administrator for available proxy servers.

If you want to use a proxy server other than that named in the Proxy Settings
dialog box, set the AccessType property of the Internet Transfer control to
icNamedProxy (2). Then set the Proxy property to the name of the proxy
server you want to use.

Microsoft Office 97/Visual Basic Programmer's Guide Page 424 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

If you prefer to use the default proxy server, set the AccessType property to
icUseDefault (0). You don't need to set the Proxy property when you use the
default proxy server.

The following table describes the settings for the AccessType property.

Using the OpenURL Method

After you have set the AccessType property, the most basic operation is to use
the OpenURL method with a valid URL to retrieve data on the Internet. When
you use the OpenURL method, the result depends on the target URL. The
following example returns the HTML document found on the Microsoft home
page at http://www.microsoft.com to a text box named Text1.

' A TextBox control named Text1 contains the
' return result of the method. The Internet Transfer
' control is named Inet1.
Text1.Text = Inet1.OpenURL("http://www.microsoft.com/")

In Microsoft Access, a value assigned to the Text property can't be longer than
1,024 characters. Substitute the following line of code that sets the Value
property of the text box instead.

Text1.Value = ActiveXCtl0.OpenURL("http://www.microsoft.com/")

As a result, the text box displays the HTML source code from the Web site,
which may resemble the following illustration.

Constant Value Description

icUseDefault 0 (Default) The control uses
default proxy server
settings found in the
Windows registry.

IcDirect 1 The control has a direct
connection to the Internet.

IcNamedProxy 2 The control uses the proxy
server specified in the
Proxy property.

Microsoft Office 97/Visual Basic Programmer's Guide Page 425 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

In this case, the default action was to return the HTML document located at the
URL. However, if the URL specifies a particular text file, the OpenURL method
retrieves the actual file. For example, the following code:

' In Microsoft Access, substitute Text1.Value
' for Text1.Text in the following line.
Text1.Text = Inet1. OpenURL("ftp://ftp.microsoft.com/disclaimer.txt")

retrieves the actual text of the file, as shown in the following illustration.

Finally, you can use the OpenURL method with a URL that includes extra data
appended to it. For example, many Web sites offer the ability to search a
database. To search a database from a Web site, you can send a URL that
includes the search criteria. The following example uses the search engine at
the www.yahoo.com site with the search criteria p=maui.

Dim strURL As String

strURL = "http://www.yahoo.com/bin/search.exe?p=maui"
' In Microsoft Access, substitute Text1.Value
' for Text1.Text in the following line.
Text1.Text = Inet1.OpenURL(strURL)

If the search engine finds a match for the criteria, the server returns an HTML
document that contains the appropriate information.

Saving Text to a File by Using the OpenURL Method

If you want to save retrieved text to a file, use the OpenURL method with the
Open, Write, and Close statements, as shown in the following example.

Dim strURL As String
Dim intFile As Integer

IntFile = FreeFile()
strURL = "http://www.microsoft.com/"
Open "MSsource.txt" For Output As #IntFile
Write #IntFile, Inet1.OpenURL(strURL)
Close #IntFile

You can't save binary files to disk by using the OpenURL method. You must use
the Execute method in conjunction with the GetChunk method as described
later in this chapter.

Microsoft Office 97/Visual Basic Programmer's Guide Page 426 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Synchronous vs. Asynchronous Transmission

The OpenURL method results in a synchronous transmission of data. In this
context, synchronous means that the transfer operation occurs before any other
procedures are run. Thus the data transfer must be completed before you can
run any other code.

The Execute method, on the other hand, results in an asynchronous
transmission. When you use the Execute method, the transfer operation occurs
independently of other procedures. Thus, after the Execute method is initiated,
other code can run while data is received in the background.

Using the OpenURL method results in a direct stream of data that you can save
to disk, or view directly in a TextBox control (if the data was text). On the
other hand, if you are using the Execute method to retrieve data, you must
monitor the control's connection state by using the StateChanged event. When
the appropriate state is reached, use the GetChunk method to retrieve data
from the control's buffer. This operation is discussed in greater detail in the
sections that follow.

Using the Execute Method

You can use the Execute method with the FTP and the HTTP protocols to
retrieve data or perform operations on Internet servers. The syntax for the
Execute method is:

controlname.Execute url, operation, data, requestheaders

The following table describes the arguments of the Execute method.

Using the Execute Method with the FTP Protocol

When using the Execute method with the FTP protocol, you only use the
operation argument, and optionally, the url argument. The url argument is
optional because after the first time you invoke the Execute method with the
url argument, the FTP connection remains open. You can perform additional

Argument Description

controlname Required. The name of the Internet Transfer
control you are working with.

url Optional. Specifies the URL that you want to
connect to.

operation Optional. Specifies the type of operation to
perform.

data Optional. Specifies additional information
needed for HTTP GET, HEAD, POST, and PUT
methods.

requestheaders Optional. Specifies additional headers to be
sent from the remote server.

Microsoft Office 97/Visual Basic Programmer's Guide Page 427 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Execute method operations on the same URL until a new URL is specified, or
until you perform the CLOSE operation. The following example retrieves a file
from a remote computer.

Inet1.Execute "FTP://ftp.microsoft.com", _
"GET disclaimer.txt c:\temp\disclaimer.txt"

For FTP operations, you do not use the data and requestheaders arguments. You
pass all of the operations and their parameters as a single string in the
operation argument, with parameters separated by a space, as follows:

operationname parameter1 parameter2

For example, to retrieve a file, the following code includes the operation name
(GET), and the two file names required by the operation.

' Get the file named Disclaimer.txt and copy it to the
' location C:\Temp\Disclaimer.txt.
Inet1.Execute, "GET Disclaimer.txt C:\Temp\Disclaimer.txt"

The operationname part of the operation argument is an FTP command. If you
have used FTP to retrieve files from anonymous FTP servers, you are familiar
with commands used to navigate through server trees, and to retrieve files to a
local hard disk. For example, to change to a different directory with the FTP
protocol, you use the "CD" command with the path to the directory you want to
change to.

For the most common operations, such as putting a file on a server and
retrieving a file from a server, the Internet Transfer control uses the same or a
similar command with the Execute method. The following example uses the
"CD" command as an argument of the Execute method to change to a different
directory.

' The txtURL text box contains the path to open. The txtRemotePath
' text box contains the path to change to.
Inet1.Execute txtURL.Text, "CD " & txtRemotePath.Text

The following table lists the FTP commands that you can use in the operation
argument of the Execute method.

FTP command Description Example

CD path Change Directory. Changes
to the directory specified in
path.

Inet1.Execute , "CD
docs\mydocs"

CDUP Changes to parent
directory. Same as "CD .."

Inet1.Execute , "CDUP"

CLOSE Closes the current FTP
connection.

Inet.Execute , "CLOSE"

DELETE file Deletes the file specified in
file.

Inet1.Execute , _
"DELETE discard.txt"

Microsoft Office 97/Visual Basic Programmer's Guide Page 428 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Important If your proxy server is a CERN proxy server, you cannot make
direct FTP connections by using the Execute method. In that case, to get a file,
use the OpenURL method with the Open, Put, and Close statements, as
described in "Saving Text to a File by Using the OpenURL Method" earlier in this
chapter. You can also use the OpenURL method to get a directory listing by
invoking the method and specifying the target directory as the URL.

Logging On to FTP Servers

DIR path Searches the directory
specified in path. If path
isn't supplied, the current
working directory is
searched. Use the
GetChunk method to
return the directory listing.

Inet1.Execute ,
"DIR /mydocs"

GETfile1 file2 Retrieves the remote file
specified in file1, and
creates a new local file
specified in file2.

Inet1.Execute , _ "GET
getme.txt C:\gotme.txt"

MKDIR path Creates a directory as
specified in path. Success
is dependent on user
privileges on the remote
host.

Inet1.Execute ,
"MKDIR /myDir"

PUT file1 file2 Copies a local file specified
in file1to the remote host
specified in file2.

Inet1.Execute , _ "PUT
C:\putme.txt /putme.txt"

PWD Print Working Directory.
Returns the current
directory name. Use the
GetChunk method to
return the directory name.

Inet1.Execute , "PWD"

QUIT Terminate current
connection

Inet1.Execute , "QUIT"

RECV file1 file2 Same as GET. Inet1.Execute , _ "RECV
getme.txt C:\gotme.txt"

RENAME file1 file2 Renames a file. Success is
dependent on user
privileges on the remote
host.

Inet1.Execute , _
"RENAME old.txt new.txt

RMDIR path Removes a directory.
Success is dependent on
user privileges on the
remote host.

Inet1.Execute , "RMDIR
oldDir"

SEND file Copies a file to the remote
host. (same as PUT.)

Inet1.Execute , _ "SEND
C:\putme.txt /putme.txt"

SIZE file Returns the size of the file
specified in file.

Inet1.Execute _
"SIZE /largefile.txt"

Microsoft Office 97/Visual Basic Programmer's Guide Page 429 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

FTP servers can be either public or private. Anyone can log on to a public
server. To log on to a private server, on the other hand, you must be a
registered user of the server. In either case, the FTP protocol requires that you
supply a user name and a password.

When logging on to public servers, it is common practice to log on as
"anonymous," (UserName = "anonymous") and use your email name as the
password. With the Internet Transfer control, the process of logging on is
simplified even further. By default, if you do not specify values for the
UserName and Password properties, the Internet Transfer control uses
"anonymous" as your user name, and your email name as the password.

If you are logging on to a private server, set the UserName, Password, and
URL properties to appropriate values, and use the Execute method, as shown
in the following example.

With Inet1
.URL = "ftp://ftp.someFTPSite.com"
.UserName = "John Smith"
.Password = "mAuI&9$6"
.Execute ,"DIR" ' Returns the directo
.Execute ,"CLOSE" ' Close the connectio

End With

After you invoke the Execute method, the FTP connection remains open. You
can then continue to use the Execute method to perform other FTP operations
such as CD and GET. When you have completed the session, close the
connection by using the Execute method with the CLOSE operation. You can
also close the connection automatically by changing the URL property, and
invoking either the OpenURL or Execute method; this closes the current FTP
connection and opens the new URL.

Using the Execute Method with the HTTP Protocol

When you use the Execute method with the HTTP protocol to request data from
the server, you use the GET, HEAD, POST, and PUT methods in the operation
argument. You can use these methods with the Execute method, as shown in
the following table.

HTTP method Description Example

GET Retrieves the file specified
in the url argument.

Inet1.Execute _
"http://www.microsoft.com"
& _ "/default.htm", "GET"

HEAD Retrieves only the headers
of the file specified in the
url argument.

Inet1.Execute , "HEAD"

POST Provides additional data to
support a request to the
remote host.

Inet1.Execute , "POST",
strFormData

PUT Replaces data at the
specified URL.

Inet1.Execute , "PUT",
"replace.htm"

Microsoft Office 97/Visual Basic Programmer's Guide Page 430 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Using the Execute Method with the Common Gateway Interface

On many World Wide Web sites, you can search a database for criteria that you
specify. Most Web sites accomplish this by using the HTTP protocol, which can
send queries that use the Common Gateway Interface (CGI).

It is not in the scope of this section to explain the CGI; however, if you are
familiar with the CGI, you can use the Execute method to construct an
application that simulates the search behavior of these Web sites. The following
example shows a typical CGI query string.

http://www.yippee.com/cgi-bin/find.exe?find=Hangzhou

You could send this same query by using the Execute method, as follows.

Dim strURL As String, strFormData As String

strURL = "//www.yippee.com/cgi-bin/find.exe"
strFormData = "find=Hangzhou"
Inet1.Execute strURL, "POST", strFormData

To retrieve resulting data from a server, you must use the GetChunk method,
as described in the following section.

Using the GetChunk Method

When you download data from a remote computer by using the Execute
method, an asynchronous connection is made. For example, if you use the
Execute method with the HTTP GET method, the server retrieves the requested
file. When the entire file has been retrieved, the StateChanged event returns
icResponseCompleted (12). At that point, you can use the GetChunk method
to retrieve the data from the buffer. This is shown in the following example.

Private Sub Inet1_StateChanged(ByVal State As Integer)
Dim vtData As Variant ' Data variable.
Dim intFile As Integer ' File number variable.

intFile = FreeFile() ' Get free file number.
Select Case State
.
. ' Other cases not shown.
.
Case icResponseCompleted

' Open a file to write to.
Open "test.txt" For Binary Access _

Write As #intFile

' Get the first chunk. NOTE: specify a byte
' array (icByteArray) to retrieve a binary file.
vtData = Inet1.GetChunk(1024, icString)

Do While LenB(vtData) > 0
Put #intFile, , vtData
' Get next chunk.
vtData = Inet1.GetChunk(1024, icString)

Microsoft Office 97/Visual Basic Programmer's Guide Page 431 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Loop
Put #intFile, , vtData
Close #intFile

End Select
End Sub

Using the WinSock Control

Microsoft Office 97, Developer Edition also provides the WinSock control, which
you can use to connect to a remote computer and exchange data. You use the
WinSock control with either the Transmission Control Protocol (TCP) or the User
Datagram Protocol (UDP). You can use both protocols to create client and server
applications. The WinSock control doesn't have a visible interface at run time.

You can use the WinSock control to:

� Create a client application that collects user information before sending it
to a central server.

� Create a server application that functions as a central collection point for
data from several users.

� Create an application in which uses can exchange messages in real time,
or "chat" with each other.

Determining Which Protocol to Use

To use the WinSock control, you must first decide which protocol to use. The
major difference between TCP and UDP is their connection state:

� The TCP protocol requires a persistent connection. It is analogous to a
telephone — the user must establish a connection before proceeding.

� The UDP protocol is a connectionless protocol. The transaction between
two computers is like passing a note — a message is sent from one
computer to another, but there is no persistent connection between the
two.

Here are a few questions that may help you determine which protocol to use:

� Will the application require acknowledgment from the server or client
when data is sent or received? If so, use the TCP protocol because it
requires an explicit connection before sending or receiving data.

� Is the integrity of your data critical? If so, use the TCP protocol. Once a
connection has been made, the TCP protocol maintains the connection and
ensures the integrity of the data. If the integrity of your data is not
critical, you can improve performance by using the UDP protocol. Using
the UDP protocol can be faster and uses less network bandwidth, but you
may experience a certain amount of data loss. However, when
transmitting an image or a sound file, the data loss may not even be

Microsoft Office 97/Visual Basic Programmer's Guide Page 432 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

noticeable.

� Will the data be sent intermittently or in one session? If the data will be
sent intermittently, you may want to use the UDP protocol because it
requires fewer network resources. For example, use the UDP protocol if
you are creating an application that notifies specific computers when
certain tasks have completed. If you want the data to be sent in one
session, use the TCP protocol because it maintains a persistent connection
to the network.

Adding the Control to a Form

In Microsoft Excel, Word, and PowerPoint, you can add the WinSock control to a
UserForm you create with the Visual Basic Editor. Although the WinSock control
is available in the Control Toolbox in Microsoft Excel, Word, and PowerPoint,
you can't add the control directly to their documents. In Microsoft Access, you
can add the WinSock control to a form in Design view. The WinSock control
doesn't display when your application is running.

To add the WinSock control to a Microsoft Excel, Word, or PowerPoint
UserForm created with the Visual Basic Editor

1. Open a Microsoft Excel, Word, or PowerPoint document.

2. On the Tools menu, point to Macro, and then click Visual Basic Editor.

This starts the Visual Basic Editor or switches to its window if it's already
open.

3. On the Insert menu, click UserForm.

A blank form is created and the toolbox is displayed.

4. Rightclick the toolbox, and then click Additional Controls.

The Additional Controls dialog box is displayed.

5. In the Available Controls box, select WinSock Control, version 5.0, and
then click OK.

A tool icon is added to the toolbox for the WinSock control. You don't need
to repeat steps 4 and 5 the next time you use the toolbox.

6. Click the new tool, and then click the form where you want to place the
control.

By default, the new control is named Winsockn, where n is some number.

To add the WinSock control to a Microsoft Access form

1. Open the form in Design view.

2. In the toolbox, click the More Controls tool.

Microsoft Office 97/Visual Basic Programmer's Guide Page 433 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

A menu appears that lists all the registered ActiveX controls in your
system.

3. On the menu of ActiveX controls, click WinSock Control, version 5.0.

4. On the form, click where you want to place the control.

By default, the new control is named ActiveXctln, where n is some
number.

Setting the Protocol Property

After you add the WinSock control to your form, you specify which protocol you
are going to use. If you want to use the UDP protocol, set the Protocol property
to sckUDPProtocol. The default setting of the Protocol property is
sckTCPProtocol. You can set the Protocol property in the property sheet or in
Visual Basic code, as follows.

Winsock1.Protocol = sckUDPProtocol

Determining the Name of a Computer

To connect to a remote computer, you must know either its Internet Protocol
(IP) address or its "friendly name." The IP address is a series of three digit
numbers separated by periods (nnn.nnn.nnn.nnn). It's much easier to
remember the friendly name of a computer.

To determine the name of a computer

1. On the Taskbar of your computer, click Start, point to Settings, and
then click Control Panel.

2. Doubleclick the Network icon.

3. Click the Identification tab.

4. The name of your computer is in the Computer name box.

After you have determined a computer's name, you can use it as the value for
the RemoteHost property of a WinSock control, as shown in the examples later
in this section.

Creating an Application That Uses the TCP Protocol

When creating an application that uses the TCP protocol, you must first decide if
your application will be a client or a server. The client makes a connection
request, which the server can then accept to complete the connection. After the
connection is complete, the client and server can freely communicate with each
other.

Microsoft Office 97/Visual Basic Programmer's Guide Page 434 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

To create a TCP server

1. Create a Microsoft Excel, Word, or PowerPoint document or a Microsoft
Access database.

2. Create a form and name it frmServer.

3. Set the Caption property of the form to TCP Server.

4. Add a WinSock control to the form and set its Name property to
tcpServer.

5. Add two text box controls to the form. Name the first txtSendData, and
the second txtOutput.

6. Add the following code to the form.

Private Sub Form_Load()
' Set the LocalPort property to an integer.
' Then invoke the Listen method.
tcpServer.LocalPort = 1001
tcpServer.Listen

End Sub

Private Sub tcpServer_ConnectionRequest
(ByVal requestID As Long)

' Check if the value of the control's State property
' is closed. If not, close the connection before
' accepting the new connection.
If tcpServer.State <> sckClosed Then tcpServer.Close
' Accept the request with the requestID parameter.
tcpServer.Accept requestID

End Sub

Private Sub txtSendData_Change()
' The TextBox control named txtSendData
' contains the data to be sent. Whenever the user
' types into the textbox, the string is sent
' using the SendData method.
tcpServer.SendData txtSendData.Text

End Sub

Private Sub tcpServer_DataArrival (ByVal bytesTotal As Long)
' Declare a variable for the incoming data.
' Use the GetData method and set the Text
' property of a TextBox named txtOutput to
' the data.
Dim strData As String
tcpServer.GetData strData
' In Microsoft Access, substitute txtOutput.Value
' for txtOutput.Text in the following line.
txtOutput.Text = strData

End Sub

These procedures create a simple server application. To complete the scenario,
you must also create a client application.

Microsoft Office 97/Visual Basic Programmer's Guide Page 435 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

To create a TCP client

1. Create a form and name it frmClient.

2. Set the Caption property of the form to TCP Client.

3. Add a WinSock control to the form and set its Name property to tcpClient.

4. Add two text box controls to the form. Name the first txtSendData, and
the second txtOutput.

5. Add a command button control to the form and name it cmdConnect.

6. Set the Caption property of the command button control to Connect.

7. Add the following code to the form.

Important Set the value of the RemoteHost property to the name of your
computer.

Private Sub Form_Load()
' The name of the Winsock control is tcpClient.
' Note: To specify a remote host, you can use
' either the IP address (ex: "121.111.1.1") or
' the computer's friendly name, as shown here.
tcpClient.RemoteHost = "RemoteComputerName"
tcpClient.RemotePort = 1001

End Sub

Private Sub cmdConnect_Click()
' Invoke the Connect method to initiate a
' connection.
tcpClient.Connect

End Sub

Private Sub txtSendData_Change()
tcpClient.SendData txtSendData.Text

End Sub

Private Sub tcpClient_DataArrival _
(ByVal bytesTotal As Long)

Dim strData As String
tcpClient.GetData strData
' In Microsoft Access, substitute txtOutput.Value
' for txtOutput.Text in the following line.
txtOutput.Text = strData

End Sub

The preceding code creates a simple client/server application. To try the two
together, make a copy of the application and put it on another computer. Open
the client on one computer and open the server on the other computer. Then
click Connect on the client form. When you type text into the txtSendData text
box on either form, the same text appears in the txtOutput text box on the
other form.

Microsoft Office 97/Visual Basic Programmer's Guide Page 436 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Accepting More Than One Connection Request

With Microsoft Word, Microsoft Excel, Microsoft PowerPoint, and Microsoft Access
forms, you can only create a server that accepts only one connection request.
However, you can use Microsoft Visual Basic version 4.0 or later to create a
server application that accepts several connection requests by using the same
control. To do so, you create a new instance of the control by setting its Index
property; this creates a control array. Then you invoke the Accept method on
the new instance. You do not need to close the connection.

The following code assumes there is a WinSock control on a form named
sckServer, and that its Index property has been set to 0; thus the control is
part of a control array. In the Declarations section, a modulelevel variable
intMax is declared. In the form's Load event, intMax is set to 0, and the
LocalPort property for the first control in the array is set to 1001. Then the
Listen method is invoked for the control, making it the control that receives
connection requests. As each connection request arrives, the code tests it to see
if the Index property is 0 (the value of the "listening" control). If so, the
listening control increments intMax, and uses that number to create a new
control instance. The new control instance then accepts the connection request.

Private intMax As Long

Private Sub Form_Load()
intMax = 0
sckServer(0).LocalPort = 1001
sckServer(0).Listen

End Sub

Private Sub sckServer_ConnectionRequest _
(Index As Integer, ByVal requestID As Long)
If Index = 0 Then

intMax = intMax + 1
Load sckServer(intMax)
sckServer(intMax).LocalPort = 0
sckServer(intMax).Accept requestID
Load txtData(intMax)

End If
End Sub

Creating an Application That Uses the UDP Protocol

Creating a UDP application is even simpler than creating a TCP application
because the UDP protocol doesn't require a connection. After you create the
forms, add the WinSock controls, and set the Protocol property to UDPProtocol,
you add code on both computers that performs the following steps:

1. Set the RemoteHost property of the WinSock control to the name of the
other computer.

2. Set the RemotePort property of the WinSock control to the LocalPort
property of the other WinSock control.

3. Use the Bind method to specify the local port to be used by the WinSock

Microsoft Office 97/Visual Basic Programmer's Guide Page 437 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

control.

The Bind method reserves a local port for use by the WinSock control. For
example, when you bind the control to port number 1001, no other application
can use that port to receive connection requests. This may be useful if you want
to prevent another application from using that port.

If there is more than one network adapter on the machine, you can specify
which adapter to use in the LocalIP argument the Bind method. If you do not
specify which network adapter to use, the control uses the first adapter listed in
the Network dialog box, which is available through the computer's Control
Panel.

When using the UDP protocol, you can change the setting of the RemoteHost
and RemotePort properties while remaining bound to the same local port.
However, with the TCP protocol, you must close the connection before changing
the RemoteHost and RemotePort properties.

In the TCP application created in the previous section, you must set the
WinSock control on the client to receive connection requests, and the WinSock
control on the server must initiate a connection. In contrast, the two computers
in a UDP application do not have such restrictive roles. Both computers can
send and receive messages. Because both computers can be considered equal in
the relationship, a UDP application is sometimes called a peertopeer application.

The following procedures create a UDP application that two people can use to
exchange messages in real time, or "talk" to each other.

To create a UDP Peer

1. Create a document in Microsoft Excel, Word, or PowerPoint, or create a
database in Microsoft Access.

2. Create a form and name it frmPeerA.

3. Set the Caption property of the form to Peer A.

4. Add a WinSock control to the form and set its Name property to
udpPeerA.

5. Set the Protocol property to UDPProtocol.

6. Add two text box controls to the form. Name the first txtSendData, and
the second txtOutput.

7. Add the following code to the form.

Private Sub Form_Load()
' The control's name is udpPeerA.
With udpPeerA

.Protocol = sckUDPProtocol ' Set the contro

.RemoteHost= "PeerB" ' Set Re

.RemotePort = 1001

.Bind 1002

Microsoft Office 97/Visual Basic Programmer's Guide Page 438 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

End With
frmPeerB.Show

' Show second fo
End Sub

Private Sub txtSendData_Change()
' Send text as soon as it's typed.
udpPeerA.SendData txtSendData.Text

End Sub

Private Sub udpPeerA_DataArrival
(ByVal bytesTotal As Long)

Dim strData As String

udpPeerA.GetData strData
' In Microsoft Access, substitute txtOutput.Value
' for txtOutput.Text in the following line.
txtOutput.Text = strData

End Sub

To create a second UDP Peer

1. Create a form and name it frmPeerB.

2. Set the Caption property of the form to Peer B.

3. Add a WinSock control to the form and set its Name property to udpPeerB.

4. Set the Protocol property to UDPProtocol.

5. Add two text box controls to the form. Name the first txtSendData, and
the second txtOutput.

6. Add the following code to the form.

Private Sub Form_Load()
' The control's name is udpPeerB.
With udpPeerB

.Protocol = sckUDPProtocol ' Set the contro

.RemoteHost= "PeerA" ' Set Re

.RemotePort = 1002

.Bind 1001
End With

End Sub

Private Sub txtSendData_Change()
' Send text as soon as it's typed.
udpPeerB.SendData txtSendData.Text

End Sub

Private Sub udpPeerB_DataArrival (ByVal bytesTotal As Long)
Dim strData As String

udpPeerB.GetData strData
' In Microsoft Access, substitute txtOutput.Value
' for txtOutput.Text in the following line.
txtOutput.Text = strData

End Sub

Microsoft Office 97/Visual Basic Programmer's Guide Page 439 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

To try this example, make a copy of the application and put it on another
computer. Open the first peer on one computer and open the second peer on
the other computer. When you type text into the txtSendData text box on either
form, the same text appears in the txtOutput text box on the other form.

Setting Up a Personal Web Server

Microsoft provides two products that make it easy to create a personal Web
server on your computer for lowvolume Web publishing: Microsoft Personal Web
Server and Microsoft Peer Web Services. These products are ideal for publishing
departmental home pages, personal home pages, or smallscale Web
applications on your company's intranet.

Although Personal Web Server and Peer Web Services are intended for small-
scale Web publishing, they provide most of the same services and features as
Microsoft Internet Information Server, a robust Web server intended for high-
volume Web publishing. You can use Personal Web Server or Peer Web Services
to develop and test Web applications, and then transfer them to a Web server
running Microsoft Internet Information Server.

Both Personal Web Server and Peer Web Services can:

� Publish Web pages on the Internet or over a LAN on an intranet by using
the HTTP service.

� Support Microsoft ActiveX controls.

� Transmit or receive files by using the FTP service.

� Run Internet Server API (ISAPI) and Common Gateway Interface (CGI)
scripts.

� Send queries to ODBC data sources by using the Internet Database
Connector component (Httpodbc.dll).

� Support the Secure Sockets Layer.

� Use passthrough security to Windows NT Server and Novell NetWare as
long as File and Printer Sharing services are installed.

� Use localuser security if Microsoft File and Print Sharing services are not
installed.

� Perform remote administration by using a Webbased application.

Installation Requirements

To run Personal Web Server or Peer Web Services, you must meet the following
installation requirements.

Microsoft Office 97/Visual Basic Programmer's Guide Page 440 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Personal Web Server

� A computer with Windows 95 installed.

� A CDROM drive for the installation compact disc.

� Adequate disk space for your information content.

Peer Web Services

� A computer with Windows NT Workstation version 4.0 installed.

� A CDROM drive for the installation compact disc.

� Adequate disk space for your information content. It is recommended that
all drives used with Peer Web Services be formatted with the Windows NT
File System (NTFS).

Publication Requirements

When using Personal Web Server or Peer Web Services, each computer you
want to access the server must have Transmission Control Protocol/Internet
Protocol (TCP/IP) installed. The TCP/IP protocol is included with Windows 95
and Windows NT Workstation version 4.0. To install and configure the TCP/IP
protocol and related components, doubleclick the Network icon in Control
Panel. Each system must meet additional requirements depending on whether
you want to use the server on an intranet or the Internet.

Intranet Publication Requirements

� A network adapter card and local area network (LAN) connection.

� The Windows Internet Name Service (WINS) server or the Domain Name
System (DNS) server installed on a computer in your intranet. WINS and
DNS run only on Windows NT Server. This step is optional, but it does
allow users to use "friendly names" instead of IP addresses when
connecting to your server.

Internet Publication Requirements

� An Internet connection and Internet Protocol (IP) address from your
Internet Service Provider (ISP).

� DNS registration for that IP address. This step is optional, but it does
allow users to use "friendly names" instead of IP addresses when
connecting to your server. For example, "microsoft.com" is the friendly
domain name registered to Microsoft. Within the microsoft.com domain,
Microsoft has named its World Wide Web (WWW) server
"www.microsoft.com." Most ISPs can register your domain names for you.

Microsoft Office 97/Visual Basic Programmer's Guide Page 441 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

� A network adapter card suitable for your connection to the Internet.

The Setup file for Personal Web Server is available on the Web. To download the
Setup program for Personal Web Server for Windows 95, connect to the
Microsoft Personal Web home page at:

http://www.microsoft.com/ie/iesk/pws.htm

You can install Personal Web Server if you are running Windows 95 or
Windows NT Workstation version 4.0. However, if you are using Windows NT, it
is recommended that you install Peer Web Services instead.

To install Personal Web Server from the Value Pack

1. Connect to the Personal Web Server home page on the Web and download
PWS10a.exe.

2. Doubleclick PWS10a.exe.

This starts the installation process. You may be required to supply
additional files from your Windows 95 Setup disks.

3. When installation is finished, the Setup program asks if you want to
restart your computer. Click Yes.

Installing Peer Web Services

The files to install Peer Web Services are provided on the Microsoft Windows NT
Workstation version 4.0 Setup CDROM.

To install Peer Web Services

1. Open Control Panel, and then doubleclick Network.

2. Click the Services tab, and then click Add.

3. In the Network Service list, doubleclick Peer Web Services.

This starts the installation process. You may be required to supply
additional files from your Windows NT Setup disks.

4. In the first Microsoft Peer Web Services Setup dialog box, click OK.

5. In the second Microsoft Peer Web Services Setup dialog box, select
which services you want to install, and then click OK.

6. In the Publishing Directories dialog box, specify the directories you
want to use for each service, or accept the default directories, and then

Installing Personal Web Server

Microsoft Office 97/Visual Basic Programmer's Guide Page 442 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

click OK.

Getting More Information

For more information about Using Personal Web Server or Peer Web Services,
you can refer to their online documentation, which is available once installation
is complete.

To view documentation for Personal Web Server or Peer Web Services

1. Start your Web browser.

2. To view the documentation for Personal Web Server, in your browser's
address box, type:

http://MyServer/docs/default.htm

To view the documentation for Peer Web Services, in your browser's
address box, type:

http://MyServer/iisadmin/htmldocs/inetdocs.htm

where MyServer is the name of the computer on which you installed
Personal Web Server or Peer Web Services. To determine the name of the
computer, open Control Panel, doubleclick the Network icon, and then
click the Identification tab.

3. Press ENTER.

Contents
� Information for Users of Microsoft Excel 4.0 Macros
� Visual Basic Equivalents for Common Macro Functions
� Creating Custom Commands and Dialog Boxes Using Visual Basic

This appendix introduces users of the Microsoft Excel 4.0 Macro Language to
Visual Basic programming. In this appendix, you'll learn how Visual Basic differs
from the Microsoft Excel 4.0 Macro Language, how you can continue using your
existing Microsoft Excel 4.0 macros, and where to find more information about
Visual Basic.

Visual Basic is a true programming language that features variables with
scoping, an integrated editor, and enhanced dialog box tools and debugging
tools. Learning Visual Basic in Microsoft Excel 97 makes it easier for you to learn

A P P E N D I X A Microsoft Office 97/Visual Basic Programmer's Guide

Switching from the Microsoft Excel 4.0 Macro
Language

Microsoft Office 97/Visual Basic Programmer's Guide Page 443 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

programming in other Microsoft Office 97 applications (Microsoft Access, Word,
and PowerPoint) as well as Microsoft Project and other Microsoft applications
that use Visual Basic. You can also control these other applications easily in
your Visual Basic code.

Information for Users of Microsoft
Excel 4.0 Macros

This section guides experienced users of Microsoft Excel 4.0 macros
to information about learning and using Visual Basic. For more
detailed information, see the chapters and Help topics that are
crossreferenced in this section.

Acting Directly on Objects in Visual Basic

In Microsoft Excel version 4.0, macros follow the "select, then do"
order of actions that pertains to all of Microsoft Excel. With Visual
Basic, you don't need to select an object you want your procedure to
change; you can change the object directly.

For example, to make a range of text bold in Microsoft Excel version
4.0, you have to first select the range with the SELECT function
before changing the format of the text with the FORMAT.FONT
function. In Visual Basic, you make a range of text bold by just
setting the Bold property of the range to True. The following
example applies bold formatting to cells C1:G5 on Sheet1.

Sub MakeSectionBold()
Worksheets("Sheet1").Range("C1:G5").Font.Bold = Tru

End Sub

Note that you can use Visual Basic to change an object (the range
C1:G5,in this case) directly, without first selecting it or canceling
the current selection. For more information about how to change
cells, sheets, and other objects in Microsoft Excel with Visual Basic,
see Chapter 4, "Microsoft Excel Objects."

Variables: More Powerful Than Names

To store a value as a variable in Microsoft Excel version 4.0, you'd
typically store the value in a name. In Visual Basic, you'd assign the
value to a variable instead.

Variables are much more flexible than names. You can make
variables available to all procedures, to only the procedures in a
given module, or to only a single procedure. You can control the
type of data that can be stored in a variable, and you can even
create variables that store a combination of data types of your
choice.

In Visual Basic, you can also define constants to hold static
(constant) values that you can refer to repeatedly. For more

Microsoft Office 97/Visual Basic Programmer's Guide Page 444 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

information about variables and constants in Visual Basic, see
Chapter 1, "Programming Basics."

Using Worksheet Functions in a Procedure

There are many worksheet functions that you can use directly in
Visual Basic procedures; the IF function is one exception, though,
given that If is also a keyword in Visual Basic. You can use the
Application qualifier to run a Microsoft Excel worksheet function
rather than a Visual Basic function. The following example causes a
"Sub or Function not defined" error because it doesn't identify ACOS
as a worksheet function.

Sub MissingObject()
x = Acos(-1)

End Sub

The following example successfully uses the Microsoft Excel
worksheet function ACOS because the code first refers to the
Application object.

Sub ReturnArccosine()
x = Application.Acos(-1)

End Sub

The only worksheet function that requires you to explicitly specify
that you're referring to either the function's Microsoft Excel version
or its Visual Basic version is the LOG function, because both function
names are spelled the same way. The Microsoft Excel LOG function
returns the logarithm of a specified number to whatever base you
indicate. The Visual Basic Log function, on the other hand, returns
the natural logarithm of a specified number.

Using Your Existing Macros in a Procedure

You can include your existing macros in new Visual Basic procedures
by using the Run method. When you debug Microsoft Excel 4.0
macros as part of your Visual Basic procedures, the Visual Basic
debugger steps into your macros as if they were written in Visual
Basic. Your macros can return information to a procedure by using
the RETURN macro function.

For more information and an example of the Run method, see "Run
Method" in Help.

New Tools to Make Debugging Easy

There are numerous tools in Visual Basic to help you debug your
code. Visual Basic debugging functionality includes breakpoints,
break expressions, watch expressions, stepping through code one
statement or one procedure at a time, and displaying the values of
variables and properties. Visual Basic also includes special

Microsoft Office 97/Visual Basic Programmer's Guide Page 445 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

debugging functionality, such as the "editandcontinue" feature,
setting the next statement to run, and procedure testing while the
application is in break mode.

For more information about the debugging capabilities of Visual
Basic, see Chapter 14, "Debugging and Error Handling."

Visual Basic Equivalents for Common
Macro Functions

The easiest way to see the Visual Basic equivalents for common
macro functions and Microsoft Excel commands is to use the macro
recorder to record macros in Visual Basic. You can arrange the
windows on your desktop so that one window shows your Visual
Basic module and the other one shows the worksheet or chart you're
working on while you're recording a macro. As you work, Microsoft
Excel adds Visual Basic statements to your module.

No matter how you write your programs in Microsoft Excel, there are
common tasks you'll want to accomplish, such as referring to
ranges, controlling how macros run, accessing data in other
applications, getting information about workbooks and objects, and
creating procedures that run in response to certain events. The
following table shows you where to look in this book for information
about how to accomplish these tasks with Visual Basic.

Creating Custom Commands and Dialog
Boxes Using Visual Basic

Microsoft Excel 97 includes tools for creating custom menus,
commands, and dialog boxes. For more information about creating
custom commands and dialog boxes using Visual Basic, see Chapter
8, "Menus and Toolbars," and Chapter 12, "ActiveX Controls and
Dialog Boxes."

For information about See this chapter

Referring to cells and ranges on
worksheets

Chapter 4, "Microsoft Excel Objects

Controlling the flow of a macro Chapter 1, "Programming Basics"

Accessing data in other
applications

Chapter 11, "Data Access Objects"

Getting information about
objects in Microsoft Excel

Chapter 4, "Microsoft Excel Objects

Running procedures in response
to events

Chapter 4, "Microsoft Excel Objects

Microsoft Office 97/Visual Basic Programmer's Guide Page 446 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Creating Custom Commands

To create a custom menu or command in Microsoft Excel version
4.0, you first create a menu or command table. You then use the
macro function ADD.MENU or ADD.COMMAND to place your custom
menu or command on a menu bar or a menu.

To create a custom menu or command in Microsoft Excel 97, you
use the Customize dialog box to assign custom commands and
menus to menu bars. For more information about using the
Customize dialog box, see Chapter 8, "Menus and Toolbars."

Displaying Builtin Dialog Boxes

In Microsoft Excel version 4.0, to display builtin dialog boxes while
running a macro, you use the questionmark form of the macro
function corresponding to the dialog box. For example, the
DEFINE.STYLE? macro function displays the dialog box in which you
define worksheet styles.

In Microsoft Excel 97, to display builtin dialog boxes while running a
procedure, you use the Dialogs method with the identifier of the
dialog box you want displayed. The following example displays the
Open dialog box (File menu).

Sub OpenFile()
Application.Dialogs(xlDialogOpen).Show

End Sub

Creating and Displaying Custom Dialog
Boxes

To create a custom dialog box in Microsoft Excel version 4.0, you
use the Dialog Editor to generate a dialog box definition you place
on a macro sheet. You then use the DIALOG.BOX macro function to
display your dialog box.

You can use the DialogBox method in your Visual Basic procedures
to run a Microsoft Excel 4.0 custom dialog box. The following
example uses the DialogBox method to display such a dialog box
and then tests the result. The variable DialogRange refers to the
range (on a Microsoft Excel 4.0 macro sheet) that contains the
dialogbox definition table.

Result = DialogRange.DialogBox
If Not Result Then

' User canceled the dialog box
Else

' Result is position number of chosen control
End If

Microsoft Office 97/Visual Basic Programmer's Guide Page 447 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

In Microsoft Excel 97, you create custom dialogs by adding ActiveX
controls to forms, or UserForms, in the Visual Basic Editor. To create
a custom dialog box, you must create a UserForm to contain
controls, add whatever controls you want to the UserForm, set
properties for the controls, and write code that responds to form
and control events. You use the Show method in a Visual Basic
procedure to display your custom dialog box. For more information
about creating dialog boxes in Microsoft Excel 97, see Chapter 12,
"ActiveX Controls and Dialog Boxes."

Contents
� Logistical Programming Changes in Microsoft Word 97
� Conceptual Differences Between WordBasic and Visual Basic
� Determining Which Properties or Methods to Use
� Selection Object vs. Range Object
� Using WordBasic Statements and Functions
� Miscellaneous Changes
� Example Macros

This appendix is intended to help users switching from the
WordBasic programming language to Visual Basic for Applications,
the new programming language in Microsoft Word 97 (and other
Office 97 applications).

The first step toward making this switch is to convert your existing
WordBasic macros. For information about converting your
WordBasic macros, see "Converting WordBasic macros to Visual
Basic" in Help. This Help topic explains how Word automatically
converts macros in Word 6.x or Word 95 templates to Visual Basic.

Although Word converts your macros, you may need to modify parts
of them manually to retain the macros' original functionality. In
addition to making modifications to converted WordBasic macros,
you may need to write new macros in the future. It's possible to
continue using WordBasic statements and functions exposed
through the WordBasic object, but gradually you'll want to switch
over to Visual Basic. For information about the functionality
available with Visual Basic, see the introduction in this book.

To help make the switch to Visual Basic an easy one, a table of
WordBasic commands and their corresponding Visual Basic syntax is
included in Help, in the topic "Visual Basic Equivalents for WordBasic
Commands."

Logistical Programming Changes in

A P P E N D I X B Microsoft Office 97/Visual Basic Programme

Switching from WordBasic

Microsoft Office 97/Visual Basic Programmer's Guide Page 448 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Microsoft Word 97

The introduction in this book discusses the capabilities of Visual
Basic. The following paragraphs supplement the information
provided in the introduction with references to previous versions of
Word.

Macro Editor The builtin macro editor in previous versions of
Word has been replaced by an integrated Visual Basic development
environment, which is referred to as the Visual Basic Editor. The
Visual Basic Editor runs in its own window and looks exactly the
same no matter which Office application you start it from.

Dialog Editor Previous versions of Word included a separate
Dialog Editor application used to design custom dialog boxes. You
create custom dialog boxes in Word 97 by creating UserForms in the
Visual Basic Editor. For more information about UserForms, see
Chapter 12, "ActiveX Controls and Dialog Boxes."

Macro Storage When you create a new macro in the Macros
dialog box in Word (point to Macro on the Tools menu, and then
click Macros), a new subroutine with the macro name you provide
is created in a module. Macros can now be stored in documents as
well as templates. You specify the storage location by selecting an
item in the Macros in box in the Macros dialog box. The Macros in
box includes template names and the name of the active document
(for example, "Sales.doc (document)").

Conceptual Differences Between
WordBasic and Visual Basic

The primary difference between Visual Basic and WordBasic is that
WordBasic consists of a flat list of approximately 900 commands,
whereas Visual Basic consists of a hierarchy of objects, each of
which exposes a specific set of methods and properties (similar to
statements and functions in WordBasic). Objects are the
fundamental building block of Visual Basic; almost everything you
do in Visual Basic involves modifying objects. Every element of
Word — documents, paragraphs, fields, bookmarks, and so on — is
represented by an object in Visual Basic. To view a graphical
representation of the object model for Word, see "Microsoft Word
Objects" in Help.

Whereas most WordBasic commands can be run at any time, Visual
Basic instructions drill down through the object model to an object
that you can manipulate using properties and methods. There are
certain objects that you can get to only from other objects — for
instance, the Font object, to which you can control from the Style,
Selection, or Find object, among others. Before you can change
any fontrelated attributes (such as bold formatting), you need to
drill down to the Font object.

The programming task of applying bold formatting demonstrates

Microsoft Office 97/Visual Basic Programmer's Guide Page 449 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

one of the differences between the two programming languages.
The following WordBasic example applies bold formatting to the
selection.

Bold 1

Visual Basic doesn't include a Bold statement and function; instead,
there's a Bold property (a property is usually an attribute of an
object, such as its size, its color, or whether or not it's bold). The
Bold property is a property of the Font object, which is returned by
the Font property. The Font property is a property of the Selection
object, which is returned by the Selection property. And finally, the
Selection property is a property of the Application object, which is
returned by the Application property. These relationships are
shown in the following object hierarchy.

Using this object hierarchy, you can build the instruction shown in
the following example to apply bold formatting to the selection.

Application.Selection.Font.Bold = True

Note Because the Selection property is "global," the Application
property is optional. To view a list of all the global properties and
methods, click <globals> at the top of the Classes list in the
Object Browser.

Instead of being composed of a flat list of commands, Visual Basic
consists of a hierarchical arrangement of objects that support a
predefined set of properties and methods (as shown in the
preceding illustration). The following table shows some common
WordBasic instructions and their Visual Basic equivalents.

The two instructions in each row of the preceding table are

WordBasic instruction Equivalent Visual Basic instructi

FileOpen .Name =
"MYDOC.DOC"

.Documents.Open FileName:= "MY

Insert "new text" Selection.TypeText Text:="new

Activate "Document1" Windows("Document1").Activate

MsgBox Font$() MsgBox Selection.Font.Name

FormatParagraph .Alignment
= 3

Selection.Paragraphs.Alignment
wdAlignParagraphJustify

Microsoft Office 97/Visual Basic Programmer's Guide Page 450 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

functionally equivalent, but their syntax is dramatically different.
Each WordBasic instruction consists of a command name (for
example, FileOpen) and any applicable arguments (for example,
.Name). Each Visual Basic instruction, on the other hand, is a
combination of one or more properties or methods (for example,
Documents and Open), followed by any applicable arguments for
each (for example, FileName). The properties and methods you use
to drill down through the object model are separated by the dot
operator.

The Open method in Visual Basic is functionally equivalent to the
WordBasic FileOpen statement when the Open method is used
with the Documents collection object. The Documents collection is
returned by the Documents property. The following illustration
shows the path to the Open method.

Following this hierarchy, you can build the instruction shown in the
following example to open Mydoc.doc.

Application.Documents.Open FileName:="MYDOC.DOC"

Note The Application property is optional because the
Documents property is "global."

Visual Basic doesn't include separate statements and functions as in
WordBasic. The Bold property is a read/write Boolean property.
This means that the Bold property can be set to either True or
False (on or off), or the current value can be returned. The
following table shows the Visual Basic equivalents for various
versions of the WordBasic Bold statement and the WordBasic Bold
function.

Determining Which Properties or
Methods to Use

There are a few techniques you can use to determine which Visual
Basic properties or methods you need to use to accomplish a

WordBasic Bold statement or
function Equivalent Visual Basic instructi

Bold 1 Selection.Font.Bold = True

Bold 0 Selection.Font.Bold = False

Bold Selection.Font.Bold = wdToggle

x = Bold() x = Selection.Font.Bold

Microsoft Office 97/Visual Basic Programmer's Guide Page 451 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

particular programming task. When you're first learning Visual
Basic, it's usually best to use the macro recorder. The macro
recorder is a tool that translates your actions into Visual Basic
instructions. For instance, if you turn on the macro recorder and
open the document named "Examples.doc" in the current folder, the
macro recorder records the following instruction.

Documents.Open FileName:="Examples.doc", ConfirmConversions
 ReadOnly:=False, AddToRecentFiles:=False, PasswordDocum
 PasswordTemplate:="", Revert:=False, WritePasswordDocum
 WritePasswordTemplate:="", Format:=wdOpenFormatAuto

To learn more about the preceding instruction, position the insertion
point within the word "Open" and then press F1. The Help topic for
the Open method explains the arguments you can use with that
method. For information about the Documents property, position
the insertion point within the word "Documents" and then press F1.

Until you become somewhat familiar with the Word object model,
there are a few tools and techniques you can use to help you drill
down through the object hierarchy.

Auto List Members When you type the dot operator after a
property or method in the Visual Basic Editor, a list of available
properties and methods is displayed. For example, if you type
Application., a list containing methods and properties of the
Application object is displayed. Select the method or property you
want to use, and then press TAB to insert the selected item.

Visual Basic Help You can use Help to find out which properties
and methods you can use with a particular object. Each object topic
in Help includes a Properties jump and a Methods jump, which
display (respectively) a list of properties and a list of methods for
the object. To jump to the appropriate Help topic, press F1 in the
Object Browser or a module.

Object model For an illustration of how Word objects are
arranged in the object hierarchy, see "Microsoft Word Objects" in
Help. Click an object in the graphic to display its corresponding Help
topic.

Object Browser The Object Browser in the Visual Basic Editor
displays the members (properties and methods) of the Word
objects.

Using the Object Browser

To perform a task in Visual Basic, you need to determine the
appropriate object to use. For example, if you want to apply
character formatting found in the Font dialog box, use the Font
object. Then you need to determine how to drill down through the
Word object hierarchy from the Application object to the Font
object, through the objects that contain the Font object you want to
modify.

Microsoft Office 97/Visual Basic Programmer's Guide Page 452 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

To see how this is done, open the Visual Basic Editor and click
Object Browser on the View menu. Click Application in the
Classes list. then click Selection in the Members list. The text at
bottom of the Object Browser indicates that Selection is a readonly
property that returns a Selection object. Click Selection at the
bottom of the Object Browser; Selection is now selected in the
Classes list, and the Members list displays the members of the
Selection object. Scroll through the list of members until you find
Font, and then click Font. The text at the bottom of the Object
Browser indicates that Font is a readonly property that returns a
Font object. Click Font at the bottom of the Object Browser; Font
is now selected in the Classes list, and the Members list displays
the members of the Font object. Click Bold in the Members pane.
The text at the bottom of the Object Browser indicates that the Bold
property is a read/write property. For more information about this
property, press F1 or click the Help button to jump to the Help topic
for the Bold property.

Given this information, you can write the instruction shown in the
following example to apply bold formatting to the selection.

Selection.Font.Bold = True

As you can see, you use methods or properties to drill down to an
object. That is, you return an object by applying a method or
property to an object above it in the object hierarchy. After you
return the object you want, you can apply the methods and control
the properties of that object.

Note A given object often exists in more than one place in the
object hierarchy. For an illustration of the Word object model, see
"Microsoft Word Objects" in Help. Also, individual properties and
methods are often available to multiple objects in the Word object
hierarchy. For example, the Bold property is a property of both the
Font and Range objects. The following example applies bold
formatting to the entire active document (the Content property
returns a Range object).

ActiveDocument.Content.Bold = True

Selection Object vs. Range Object

Most WordBasic commands modify whatever is selected. For
example, the Bold command formats the selection with bold
formatting, and the InsertField command inserts a field at the
insertion point. Visual Basic supports this same functionality
through the Selection object, which you return by using the
Selection property. The selection can be a block of text or just the
insertion point.

The following Visual Basic example inserts the text "Hello World"

Microsoft Office 97/Visual Basic Programmer's Guide Page 453 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

and a new paragraph after the selection.

Selection.InsertAfter Text:="Hello World"
Selection.InsertParagraphAfter

In addition to working with the selection, you can define and work
with various ranges of text in a document. A Range object refers to
a contiguous area in a document, with a starting character position
and an ending character position. Similar to the way you use
bookmarks in a document, you use Range objects in Visual Basic to
identify portions of a document. For example, you can use Visual
Basic to apply bold formatting anywhere in a given document
without changing the selection. The following example applies bold
formatting to the first 10 characters in the active document.

ActiveDocument.Range(Start:=0, End:=10).Bold = True

The following example applies bold formatting to the first
paragraph.

ActiveDocument.Paragraphs(1).Range.Bold = True

Both of the preceding example change the formatting in the active
document without changing the selection. In most cases, Range
objects are preferred over the Selection object for the following
reasons:

� You can define and use multiple Range objects, whereas you
can have only one Selection object per document window.

� Manipulating Range objects doesn't change the selection.

� Manipulating Range objects is faster than working with the
selection.

For more information about working with Range and Selection
objects, see Chapter 7, "Microsoft Word Objects."

Using WordBasic Statements and
Functions

You can use WordBasic statements and functions in your Visual
Basic macros. When you use a WordBasic macro in Word 97, the
macro is automatically modified to work with Visual Basic. The
following example is a WordBasic macro in a Word 95 template.

Sub MAIN
FormatFont .Name = "Arial", .Points = 10
Insert "Hello World"
End Sub

Microsoft Office 97/Visual Basic Programmer's Guide Page 454 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

When the template is opened in Word 97, the macro is converted to
the code shown in the following example.

Public Sub Main()
WordBasic.FormatFont Font:="Arial", Points:=10
WordBasic.Insert "Hello World"
End Sub

Each statement in the converted macro begins with the WordBasic
property. The WordBasic property returns an object with methods
that correspond to the WordBasic statements and functions; this
object makes it possible to run WordBasic macros in Word 97. You
can reuse old code (instructions that use the WordBasic property)
along with new instructions that you write (instructions that don't
use the WordBasic property). The following example is functionally
equivalent to the preceding macro; however, the second WordBasic
instruction has been changed to use the TypeText method of the
Selection object.

Public Sub Main()
WordBasic.FormatFont Font:="Arial", Points:=10
Selection.TypeText Text:="Hello World"
End Sub

Using WordBasic Statements

If you still want to use WordBasic statements in Word 97, precede
each WordBasic statement with the WordBasic property followed
by the dot operator. The following Visual Basic example moves the
insertion point to the beginning of the document.

WordBasic.StartOfDocument

The following example sets justified paragraph alignment and adds
1 inch of space above and below each paragraph in the selection.

WordBasic.FormatParagraph .Alignment = 3, .Before = "1 in",

The following example selects all text from the insertion point
through the MyMark bookmark. (Notice how the With statement is
used to specify the WordBasic object once for a series of
instructions.)

With WordBasic
 .ExtendSelection
 .EditGoTo "MyMark"
 .Cancel
End With

Microsoft Office 97/Visual Basic Programmer's Guide Page 455 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Using WordBasic Functions

Likewise, to use WordBasic functions in Word 97, precede the
WordBasic function with the WordBasic property followed by the dot
operator, and use square brackets around the function name. The
following table shows the original WordBasic syntax and the
corresponding Visual Basic syntax using the WordBasic property.

Note Methods of the WordBasic object are slower than methods
and properties of other Visual Basic objects. For example,
WordBasic.FileOpen is slower than Documents.Open. Also, the
WordBasic language won't be updated with new commands in the
future. Visual Basic includes objects, properties, and methods that
duplicate and improve on WordBasic functionality. If you know
which WordBasic command to use to perform a particular task, see
the conversion table in "Visual Basic Equivalents for WordBasic
Commands" in Help. This will give you a guide as to which Visual
Basic methods and properties to use for specific tasks.

Miscellaneous Changes

This section outlines other changes to the programming
environment in Word 97.

Syntax Changes

Use the dot operator (.) to separate properties and methods in a
Visual Basic instruction. The following example makes the selected
text red. The example uses dots to separate the Selection, Font,
and ColorIndex properties.

Selection.Font.ColorIndex = wdRed

Use an equal sign (=) to set property values. The following example
makes the first paragraph in the active document bold.

ActiveDocument.Paragraphs(1).Range.Bold = True

Use a colon followed by an equal sign (:=) to set an argument of a
method, and use a comma to separate arguments of a method. The
following example opens MyDoc.doc as a readonly document.

WordBasic instructions Equivalent Visual Basic instructi

MsgBox Font$() MsgBox WordBasic.[Font$]()

If Bold() = 0 Then Bold 1 If WordBasic.[Bold]() = 0 Then
WordBasic.Bold 1

x = AppInfo$(1) x = WordBasic.[AppInfo$](1)

Microsoft Office 97/Visual Basic Programmer's Guide Page 456 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

FileName and ReadOnly are arguments of the Open method.

Documents.Open FileName:="C:\MyFiles\MyDoc.doc", ReadOnly:=

Use a space followed by an underscore character (_) to continue a
Visual Basic instruction to the next line. (In WordBasic, the
continuation character is a backslash character (\).) The following
Visual Basic example spans three lines. The first and second lines
end with continuation characters. Press ENTER after typing the
continuation character.

Documents.Open FileName:="C:\MyFiles\MyDoc.doc", _
 ConfirmConversions:=False, ReadOnly:=False, AddToRecent
 Revert:=False, Format:=wdOpenFormatAuto

Data Types

Visual Basic has many more data types than does WordBasic. You
can define and use variables without learning about data types, but
if you want to write efficient code you should define variables with
the appropriate data type (for instance, Integer, String, or Long).
The following example defines the counter variable as an integer.

Dim counter As Integer

If you don't specify a data type when you define a variable, Visual
Basic automatically specifies the Variant data type, which takes up
the largest amount of memory (a minimum of 16 bytes) of all the
data types. For information about the various Visual Basic data
types, see Chapter 1, "Programming Basics," or see "Data Type
Summary" in Help.

Concatenating Strings and Inserting Special
Characters

Use the ampersand character (&) instead of a plus sign (+) to
concatenate strings. To insert special characters, you can continue
to use the Chr$() function in Word 97, or you can use one of the
following constants: vbCr, vbLf, vbCrLf, or vbTab. The following
table shows WordBasic instructions that use concatenated strings
and special characters, and their Visual Basic equivalents.

WordBasic instruction Equivalent Visual Basic instructi

Insert "Hamlet " + Chr$(13) Selection.InsertAfter Text:="H
vbCr

Msgbox "Hello" + Chr$(32) +
"Tom"

MsgBox Text:="Hello" & Space &

Insert Chr$(9) Selection.InsertAfter Text:=vb

Microsoft Office 97/Visual Basic Programmer's Guide Page 457 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Note Use the ChrW$() function to return a string that contains
the character associated with the specified Unicode character.

Loops and Conditional Statements

Visual Basic and WordBasic have similar conditional and looping
statements (also known as control structures). Visual Basic includes
additional looping statements, which are marked with an asterisk in
the following table. For information about using the conditional and
looping statements in the following table, see Chapter 1,
"Programming Basics."

Visual Basic includes a For...Next statement for looping through a
series of instructions. For looping through objects in a collection,
however, the For Each…Next statement works more efficiently.
The following WordBasic example creates a new document and then
inserts the available font names.

FileNewDefault
For count = 1 To CountFonts()
 Insert Font$(count)
 InsertPara
Next count

The following Visual Basic example is an equivalent for the
preceding WordBasic example. Notice how the With statement is
used to specify the Selection object once for a series of
instructions.

Documents.Add
For i = 1 To FontNames.Count
 With Selection
 .InsertAfter Text:=FontNames(i)
 .InsertParagraphAfter
 .Collapse Direction:=wdCollapseEnd
 End With

Statement Purpose

If...Then...Else Branching when the specified condi
or False

Select Case Selecting a branch from a set of con

Do...Loop* Looping while or until the specified
True

While...Wend Looping while the specified conditio
(same as the Do While…Loop form
Loop)

For...Next Repeating a group of instructions a
number of times

For Each...Next* Repeating a group of instructions fo
object in the specified collection

Microsoft Office 97/Visual Basic Programmer's Guide Page 458 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Next I

The For Each…Next statement automatically loops through each
item in the collection without using a counter variable that the
For…Next statement requires. The following Visual Basic example
is also an equivalent for the preceding WordBasic example.
However, it is more efficient than the preceding Visual Basic
equivalent, which uses For…Next.

Documents.Add
For Each aFont In FontNames
 With Selection
 .InsertAfter Text:=aFont
 .InsertParagraphAfter
 .Collapse Direction:=wdCollapseEnd
 End With
Next aFont

Measurements

Often you can specify measurements in WordBasic macros either in
points or as a text measurement (that is, a measurement specified
as a string). For example, the following WordBasic example sets
justified alignment and adds 1 inch of space above and below each
paragraph in the selection (1 inch = 72 points).

FormatParagraph .Alignment = 3, .Before = 72, .After = "1 i

The following Visual Basic example is equivalent to the preceding
WordBasic statement. The With statement is used to specify the
Paragraphs collection object once for a series of instructions that
set properties of the Paragraphs collection.

With Selection.Paragraphs
 .Alignment = wdAlignParagraphJustify
 .SpaceBefore = 72
 .SpaceAfter = InchesToPoints(1)
End With

You must specify measurements for Word methods and properties in
points. You can do this either by specifying the number of points as
a number or by using one of the following conversion methods to
convert the measurement to points: CentimetersToPoints,
InchesToPoints, LinesToPoints, MillimetersToPoints, or
PicasToPoints. The preceding example uses the InchesToPoints
method to convert 1 inch to points.

Example Macros

This section provides some WordBasic and Visual Basic macros for
comparison.

Microsoft Office 97/Visual Basic Programmer's Guide Page 459 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Applying Formatting

The following WordBasic macro applies character and paragraph
formatting to the selected text.

Sub MAIN
FormatFont .Font = "Times New Roman", .Points = 14, .AllCap
FormatParagraph .LeftIndent = "0.5"
SpacePara1
End Sub

The following Visual Basic macro is the equivalent of the preceding
WordBasic macro. This macro uses the Selection property to apply
character and paragraph formatting to the selected text. It uses the
Font property to gain access to characterformatting properties, and
it uses the ParagraphFormat property to gain access to
paragraphformatting properties and methods.

Sub Macro1()
With Selection.Font
 .Name = "Times New Roman"
 .Size = 14
 .AllCaps = True
End With
With Selection.ParagraphFormat
 .LeftIndent = InchesToPoints(0.5)
 .Space1
End With
End Sub

Deleting to the Beginning of a Sentence

The following WordBasic macro deletes the text between the
insertion point and the beginning of the sentence that the insertion
point is positioned within. The macro then capitalizes the first letter
of the remaining text.

Sub MAIN
SentLeft 1, 1
EditCut
ChangeCase 4
End Sub

The following Visual Basic macro uses the MoveStart method to
extend the selection to the beginning of the active sentence. The
Cut method cuts the selected text and places it on the Clipboard,
and the Case property changes the capitalization of the character
following the selection.

Sub Macro1()
With Selection
 .MoveStart Unit:=wdSentence, Count:=-1
 .Cut

Microsoft Office 97/Visual Basic Programmer's Guide Page 460 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

 .Range.Case = wdTitleSentence
End With
End Sub

Removing Excess Paragraph Marks

Some sources of text include a paragraph mark at the end of every
line. This text is difficult to work with in Word because Word treats
each line as a separate paragraph and doesn't wrap the text. The
following WordBasic macro removes the excess paragraph marks
(the endofline paragraph marks) but leaves the endofparagraph
marks.

Sub MAIN
EditReplace .Find = "^p^p", .Replace = "@#$#", \
 .Direction = 0, .ReplaceAll, .Format = 0, .Wrap = 1
FileSave
EditReplace .Find = "^p", .Replace = " ", \
 .Direction = 0, .ReplaceAll, .Format = 0, .Wrap = 1
FileSave
EditReplace .Find = "@#$#", .Replace = "^p^p", \
 .Direction = 0, .ReplaceAll, .Format = 0, .Wrap = 1
End Sub

The preceding macro assumes that two consecutive paragraph
marks signify the end of a paragraph. When you remove paragraph
marks from text, you usually want to preserve separate paragraphs.
For that reason, this macro replaces two consecutive paragraph
marks with the placeholder "@#$#". The macro then replaces each
remaining paragraph mark with a space. Finally, it replaces the
"@#$#" placeholder with two paragraph marks.

The following Visual Basic macro is the equivalent of the preceding
WordBasic macro. The macro uses the Execute method of the Find
object to execute the three find and replace operations. It uses the
Save method to save the active document after each find and
replace operation.

Sub Macro1()
With Selection.Find
 .Execute FindText:="^p^p", ReplaceWith:="@#$#", Wrap:=w
 Replace:=wdReplaceAll, Format:=False, Forward:=True
 ActiveDocument.Save
 .Execute FindText:="^p", ReplaceWith:=" ", Wrap:=wdFind
 Replace:=wdReplaceAll, Format:=False, Forward:=True
 ActiveDocument.Save
 .Execute FindText:="@#$#", ReplaceWith:="^p^p", Wrap:=w
 Replace:=wdReplaceAll, Format:=False, Forward:=True
End With
End Sub

Counting How Many Times a Word Appears

The following WordBasic macro uses a While...Wend loop to count
the number of times that a specified word appears in a document.

Microsoft Office 97/Visual Basic Programmer's Guide Page 461 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

The InputBox$() function prompts the user for a search word.

Sub MAIN
count = 0
True = -1
searchtext$ = InputBox$("Please type a word to search for:"
StartOfDocument
EditFind .Find = searchtext$, .Direction = 0, .MatchCase =
 .WholeWord = 0, .Format = 0, .Wrap = 0
While EditFindFound() = True
 count = count + 1
 RepeatFind
Wend
MsgBox searchtext$ + " was found " + count + " times"
End Sub

The following Visual Basic macro accomplishes the same task as the
preceding WordBasic macro by using a Do...Loop statement and
the Execute method of the Find object. Because the macro gets to
the Find object from a Range object (the Content property returns
a Range object), the selection in the document is unchanged. Each
time the specified word is found, the count variable is incremented
by 1. As soon as the Do…Loop statement finishes looping through
the document (that it, when it has counted all instances of the
specified word), the macro exits the loop and displays the results in
a message box.

Sub Macro1()
count = 0
searchtext$ = InputBox$("Please type a word to search for:"
With ActiveDocument.Content.Find
 Do While .Execute(FindText:=searchtext$, Format:=False,
 MatchCase:=False, MatchWholeWord:=False) = True
 count = count + 1
 Loop
End With
MsgBox searchtext$ & " was found " & count & " times"
End Sub

A1-style string references
accessors
ActionSettings objects
Active Server Pages (ASP)
ActiveWorkbook property
ActiveX controls
ActiveX controls

� adding to dialog boxes

Microsoft Office 97/Visual Basic Programme

Index A

A B C D E F G H I J K L M N O P Q R S T U

Microsoft Office 97/Visual Basic Programmer's Guide Page 462 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

� documents
� event procedures
� events
� Internet
� Microsoft WebBrowser
� programmatic access
� properties, setting
� setting values at run time
� slides
� worksheets

Address property
Application events
Application objects

� Automation
� Microsoft Access, overview
� Microsoft Excel, overview
� PowerPoint, overview
� PowerPoint, properties
� PowerPoint, returning
� PowerPoint, setting and behavior control
� PowerPoint, shared office features
� PowerPoint, window control
� Word

Automation objects

balloons, Office Assistant
� check boxes
� creating
� heading and text
� icons and bitmaps
� labels
� managing multiple
� modeless, creating with Callback procedures

batch optimistic updating
� collisions
� overview
� procedure

break mode
� bypassing sections of code
� Call Stack
� entering at Problem statements
� halting execution with breakpoint
� isolating problem areas
� overview, characteristics

Microsoft Office 97/Visual Basic Programme

Index B

A B C D E F G H I J K L M N O P Q R S T U

Microsoft Office 97/Visual Basic Programmer's Guide Page 463 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

� overview, using
� Step Into
� Step Out
� Step Over
� Stop statements
� values, setting in the Immediate window
� watch expressions

breakpoints, defined
breakpoints, identifying errors
bugs

� avoiding
� defined

Call Stack, defined
Call Stack, testing with the Immediate window
calls list, searching in error handling
cells

� loop, example
� loop, using For Each...Next
� returning
� returning, using the Offset property

chart events
class modules
collections

� adding DAO objects
� CommandBars, Word
� Connections
� Containers
� Control
� Databases
� defined
� Dialogs
� Documents
� Errors
� Fields
� Forms
� Groups
� Hyperlinks
� index numbers
� Indexes
� Modules
� Parameters, defined
� Parameters, as ODBCDirect workspace
� Properties
� QueryDef

Microsoft Office 97/Visual Basic Programme

Index C

A B C D E F G H I J K L M N O P Q R S T U

Microsoft Office 97/Visual Basic Programmer's Guide Page 464 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

� Recordset
� Recordsets
� Reference
� References
� Relations
� Reports
� ShapeRange
� Shapes
� Slides
� Styles, Word 97
� Users
� Workspaces, DAO
� Workspaces, ODBC

collisions, batch update
column indexes

� loop counters
� multicolumn lists
� numeric

Connection objects
constants

� built-in, Office object library
� using to increase speed of applications

Container objects
control IDs for menus and toolbars
Control objects

� ActiveX
� collections
� Data-Bound
� overview
� properties
� referring
� types, listed

control structures, Visual Basic
� nesting
� overview

controls See ActiveX controls
CurrentRegion property
cursors, ODBCDirect

� characteristics
� choosing types
� client-side
� defined
� lock types
� multiple results sets, retrieving
� ODBC limitations
� record locking
� server-side

Customize dialog box
� commands, adding to menus
� custom menu bars, adding
� custom toolbars, adding
� deleting menu boxes

Microsoft Office 97/Visual Basic Programmer's Guide Page 465 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

� menus, adding
� overview
� restoring built-in menu components
� shortcut menus
� submenus, adding
� toolbar controls, adding and grouping
� toolbar controls, deleting
� toolbar controls, restoring

DAO (Data Access Objects)
� Access databases, designing
� collections
� Container objects
� Database objects
� database replicas
� DBEngine objects
� Document objects
� Error objects
� Field objects
� Group objects
� hierarchy
� Index objects
� Microsoft Jet
� object library
� ODBCDirect
� overview
� Parameter objects
� QueryDef objects
� Recordset objects
� referring in Visual Basic
� Relation objects
� sources
� tables, creating
� User objects
� working with database formats
� Workspace objects

Database objects
databases See also Microsoft Access

� data, saving as HTML
� IDC/HTX files

DBEngine objects
� DAO
� ODBCDirect

debugging

Microsoft Office 97/Visual Basic Programme

Index D

A B C D E F G H I J K L M N O P Q R S T U

Microsoft Office 97/Visual Basic Programmer's Guide Page 466 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

� avoiding bugs
� break mode, characteristics
� break mode, using
� breaking execution
� defined
� design time
� NextStatement, setting up and showing
� Range Object code
� run time
� techniques
� testing data using immediate window
� tips
� tools
� using error handlers
� using Watch expressions
� windows

design time
dialog boxes

� built-in, displaying
� closing
� controls, adding
� creating
� creating custom in Excel
� Customize, overview
� default value setting for ActiveX controls
� displaying
� event procedures
� properties
� sharing between applications
� tabs, creating

Do...Loop
DoCmd objects
Document objects, Microsoft Word

� defined
� returning

documentation
� conventions
� overview

documents
� accessing objects
� activating
� ActiveX controls
� adding objects
� closing
� creating
� events
� fields, adding and editing
� HTML, creating from Word documents
� modifying and formatting elements
� opening
� printing

Microsoft Office 97/Visual Basic Programmer's Guide Page 467 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

� saving
� stories

DocumentWindow objects

EnableEvents property
Envelope objects, returning in Microsoft Word
error handlers

� active
� calls list, searching
� common errors, handling
� defined
� designing
� disabling
� guidelines
� hierarchy
� inline
� referenced objects
� Resume and Resume Next, differences
� Resume and Resume Next, restarting operations at specified lines
� returning error numbers
� setting
� testing through error generation
� Variants
� writing the routine

Error objects
errors

� avoiding by validating objects
� error handlers
� hyperlinks
� intercepting
� numbers, returning
� referenced objects
� run-time, fixing
� testing error handlers
� types

events
� ActiveX control
� application, described
� application, enabling
� chart
� defined
� disabling
� documents
� enabling

Microsoft Office 97/Visual Basic Programme

Index E

A B C D E F G H I J K L M N O P Q R S T U

Microsoft Office 97/Visual Basic Programmer's Guide Page 468 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

� sheets, using on
� supported by Outlook items
� using in Excel
� using with class modules
� viewing procedures
� WebBrowser control
� workbook
� worksheet-level

expressions, recorded

Field objects, Microsoft Jet workspace
Field objects, ODBC workspace
Find and Replacement objects
For Each...Next loop
For Each...Next loop, on a range of cells
Form objects

� creating at run time
� modules
� overview
� properties
� referring

FormField objects, Microsoft Word

Getting Started with Visual Basic
graphics See shapes
Group objects

HeaderFooter objects
Help, Visual Basic online
HTML (Hypertext Markup Language)

� defined
� documents, creating from Microsoft Access data

Microsoft Office 97/Visual Basic Programme

Index F

A B C D E F G H I J K L M N O P Q R S T U

Microsoft Office 97/Visual Basic Programme

Index G

A B C D E F G H I J K L M N O P Q R S T U

Microsoft Office 97/Visual Basic Programme

Index H

A B C D E F G H I J K L M N O P Q R S T U

Microsoft Office 97/Visual Basic Programmer's Guide Page 469 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

� documents, opening in Microsoft Access
� documents, opening in Microsoft Excel
� documents, opening in PowerPoint
� documents, opening in Word
� documents, saving from Word documents
� IDC/HTX files
� OutputTo method to save documents
� presentations, saving from PowerPoint presentations
� Publish to the Web wizard
� worksheets, saving from Microsoft Excel worksheets

hyperlinks
� absolute link paths
� addresses, specifying
� collections
� error handling
� field storage formats
� methods and properties
� objects accessible within Office 97 applications
� objects
� objects, loop
� relative link paths
� returning
� storing in Microsoft Access tables

IDC/HTX files, creating from Microsoft Access data
Immediate windows

� assigning values to variables and properties
� error numbers
� printing information
� testing procedures
� tips

index numbers, collection
Index object
indexes, row and column
InlineShape objects, Microsoft Word
Internet

� ActiveX controls
� defined
� helper applications
� HTMLs defined
� hyperlinks, defined
� hyperlinks, working with
� IDC/HTX files
� intranets

Microsoft Office 97/Visual Basic Programme

Index I

A B C D E F G H I J K L M N O P Q R S T U

Microsoft Office 97/Visual Basic Programmer's Guide Page 470 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

� Java Applets
� Microsoft WebBrowser
� overview of Office development capabilities
� Peer Web Services
� personal Web server, setting up
� plug-ins
� protocols listed
� scripting languages
� Transfer control
� URLs (Uniform Resources Locators)

Internet Transfer control
� AccessType Property, setting
� adding to forms
� Execute method
� OpenURL method
� overview

intranets
IP (Internet Protocol) address, determining

JScript

keywords, WithEvents

Library Folder
LibraryPath property
lock types for ODBC cursors
looping

� cells, example
� cells, using Do...Loop
� cells, using For Each...Next
� For Each...Next

Microsoft Office 97/Visual Basic Programme

Index J

A B C D E F G H I J K L M N O P Q R S T U

Microsoft Office 97/Visual Basic Programme

Index K

A B C D E F G H I J K L M N O P Q R S T U

Microsoft Office 97/Visual Basic Programme

Index L

A B C D E F G H I J K L M N O P Q R S T U

Microsoft Office 97/Visual Basic Programmer's Guide Page 471 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

� shapes and shape ranges

macros
� automatic, Word
� recording user-interface actions
� Visual Basic and WordBasic comparisons

MailMerge objects, returning in Microsoft Word
Me property
menus

� adding
� commands, adding and grouping
� components discussed
� components, displaying for specific documents
� components, enabling and disabling
� control IDs
� custom menu bars, adding
� customizing guidelines
� deleting components
� displaying custom menu bars
� items, indicating state of options
� items, renaming
� Microsoft Access
� Microsoft Excel
� PowerPoint
� restoring built-in components
� run-time modifications
� shortcuts, adding
� submenus, adding
� Word

methods
� defined
� Execute, Internet Transfer control
� hyperlinks
� keeping outside loops
� object models
� Open
� OpenURL
� Range Objects, returning
� Range, returning Range objects
� Selection object, Word
� Shapes collection, adding shapes to documents, worksheets, and slides}
� Visual Basic, determining which to use
� WebBrowser control

Microsoft Access

Microsoft Office 97/Visual Basic Programme

Index M

A B C D E F G H I J K L M N O P Q R S T U

Microsoft Office 97/Visual Basic Programmer's Guide Page 472 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

� Active Server Pages (ASP)
� Application objects
� Control objects
� data, saving as HTML
� databases, accessible through DAO
� databases, designing with DAO
� databases, linking tables
� databases, persistent queries
� databases, replicas
� Desktop driver, installing
� DoCmd objects
� Form objects
� HTML documents, opening
� hyperlinks
� hyperlinks objects, creating
� IDC/HTX files
� menu bar modification
� Module objects
� objects and collections described
� objects available
� Publish to the Web wizard
� Reference objects
� Report objects
� Screen objects
� toolbar modification
� user interface modification

Microsoft Excel 4.0 macros
� debugging tools in Visual Basic
� objects, handling in Visual Basic
� using in Visual Basic procedures
� values, assigning to Visual Basic variables
� worksheet functions, using in Visual Basic

Microsoft Excel
� Application objects
� built-in dialog boxes, displaying
� commands, creating custom
� commands, Visual Basic equivalents
� Dialog Editor, creating custom dialog boxes
� HTML documents, opening
� hyperlinks objects, creating
� menu bar modification
� optimizing strategies
� Range objects
� storing workbooks in the executable file folder
� toolbar modification
� user interface modification
� Visual Basic
� Workbook objects
� worksheets, ActiveX controls
� worksheets, saving as HTML

Microsoft Office 97/Visual Basic Programmer's Guide Page 473 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

Microsoft Internet Explorer
Microsoft Jet

� Container objects, DAO
� DAO
� Database objects, DAO
� DBEngine objects, defined
� DBEngine objects, DAO
� Document objects
� Error objects, DAO
� Field objects, DAO
� Group objects, DAO
� Index objects
� ODBC data source, accessing
� Parameter objects, DAO
� QueryDef objects
� Recordset objects, DAO
� Relation objects, DAO
� TableDef objects
� User objects, DAO
� using DAO with ODBC data sources
� Workspace objects, DAO
� workspaces, creating

Microsoft Office
� automating tasks using objects
� development, mastering
� Getting Started with Visual Basic
� Help, Visual Basic
� hyperlinks
� Internet overview
� menus, overview of components
� object library
� Office Assistant balloons
� Office Assistant overview
� programming objects from one application to another
� resource information for additional Visual Basic Help
� WinSock control

Microsoft Outlook
� automating from other Office applications
� events, supported by items
� folders
� items
� object models
� objects, supported by items
� VBScript programming
� Visual Basic Help

Microsoft PowerPoint
� ActionSettings objects
� Application objects
� HTML documents, opening
� hyperlinks objects, creating

Microsoft Office 97/Visual Basic Programmer's Guide Page 474 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

� menu bar modification
� objects active when changes are made on-screen
� Presentation objects
� presentations, saving as HTML
� Selection objects
� shapes, controlling in slide shows
� Slide objects
� SlideRange objects, defined
� SlideRange objects, returning
� slides, ActiveX controls
� toolbar modification
� user interface modification
� Visual Basic Help

Microsoft Web Browser control
� adding to forms
� displaying Web pages or documents
� events, viewing
� methods, viewing
� overview
� properties, viewing

Microsoft Word
� Application objects
� automating from other Office applications
� automating other Office applications
� CommandBars context
� commands, modifying
� concatenating strings
� data type changes
� Dialogs collection
� Document objects
� documents, ActiveX controls
� documents, adding and editing fields
� documents, saving as HTML
� embedded objects, accessing in other Office applications
� Envelope objects, returning
� events
� Find and Replacement objects
� FormField objects
� HeaderFooter objects
� HTML documents, opening
� hyperlink objects, creating
� InlineShape objects
� macros, automatic
� MailMerge objects, returning
� menu bar modification
� optimizing strategies
� Range objects
� Selection
� special characteristics, inserting
� Styles collection

Microsoft Office 97/Visual Basic Programmer's Guide Page 475 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

� syntax changes
� table objects
� toolbar modification
� user interface modification
� Visual Basic Help, displaying
� Visual Basic programming changes

Module objects
� class, defined
� class, events
� lines
� methods
� new
� overview
� procedures
� properties
� referring
� standard
� text

Module property
multicolumn lists for displaying Microsoft Excel items

There are no index entries for this letter.

object activation, minimizing
Object Browser
object library

� DAO
� defined
� Office applications

object models
� binding
� collections
� help for writing code
� location
� macro recorder, recording user-interface actions
� methods, defined

Microsoft Office 97/Visual Basic Programme

Index N

A B C D E F G H I J K L M N O P Q R S T U

Microsoft Office 97/Visual Basic Programme

Index O

A B C D E F G H I J K L M N O P Q R S T U

Microsoft Office 97/Visual Basic Programmer's Guide Page 476 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

� methods, applying
� Microsoft Outlook
� Object Browser
� overview
� properties, defined
� properties, applying
� returning references and accessors
� user interface relationships

object types
object variables
objects, DAO See DAO (Data Access Objects)
objects, Microsoft Access

� Application
� Control
� DoCmd
� Form
� Module
� overview
� Reference
� Report
� Screen

objects, Microsoft Excel
� Application
� events
� overview
� Range
� Workbook

objects, Microsoft PowerPoint
� ActionSettings
� Application
� DocumentWindow
� Presentation
� Selection
� Slide
� Slide Range
� SlideShowView
� View

objects, Microsoft Word
� Application
� Automation
� Document
� Envelope
� Find and Replacement
� FormField
� HeaderFooter
� InlineShape
� MailMerge
� Range
� Selection
� tables
� validity determination

Microsoft Office 97/Visual Basic Programmer's Guide Page 477 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

ODBC data sources
� accessing with Microsoft Jet
� accessing with ODBCDirect
� ODBCDirect, defined
� registering
� working from DAO

ODBCDirect
� batch optimistic updating
� Connection objects
� cursors
� Database objects
� DBEngine objects
� Field objects
� object model illustration
� ODBC data source, accessing
� Parameter objects
� QueryDef objects
� Recordset objects
� stored procedures
� using with DAO
� Workspace objects

Office Assistant
� balloons
� overview

Offset Property
OLE IDispatch Interface
OLE objects on documents, worksheets, and slides
OLE References, minimizing

� object variables, using
� properties and methods
� using For Each...Next loop
� using the With statement

Open method
optimizing

� defined
� object references
� using For Each...Next loop
� using the With statement
� values

Parameter objects, ODBCDirect
Path property
Peer Web Services
Personal Web server
Presentation objects

� activating presentations

Microsoft Office 97/Visual Basic Programme

Index P

A B C D E F G H I J K L M N O P Q R S T U

Microsoft Office 97/Visual Basic Programmer's Guide Page 478 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

� closing presentations
� creating new presentations
� importing presentations from Word
� opening new presentations
� overview
� page orientation for presentations
� presentation appearance consistency
� printing presentations
� returning
� saving presentations
� slide shows, setting up and running
� slides, accessing
� when used by PowerPoint

presentations, HTML
properties

� AccessType, setting for Internet connections
� ActiveWorkbook
� ActiveX control, setting at design time
� ActiveX control, setting values at run time
� Address
� Application objects in PowerPoint
� collections
� ControlType
� CurrentRegion
� defined
� dialog boxes, setting
� EnableEvents
� Form object
� Hyperlink
� hyperlinks
� LibraryPath
� Me
� Module
� Module object
� object models
� Offset
� PathSeparator
� Path
� Properties
� Range Objects, returning
� RecordSource
� Reference objects
� Screen objects
� ScreenUpdating
� Section
� Selection object, Word
� Sheets
� Slides
� UsedRange
� Visible

Microsoft Office 97/Visual Basic Programmer's Guide Page 479 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

� Visual Basic, determining which to use
� WebBrowser control

Properties property
proxy servers

QueryDef objects
� asynchronous
� ODBCDirect
� overview
� persistent queries, creating with DAO
� temporary, objects

Range objects, Microsoft Excel
� A1-style string references
� Address Property
� codes, debugging
� CurrentRegion property
� defined
� loop cells
� names
� numeric row and column indexes
� Offset property
� returning, properties and methods
� sub-ranges
� super-ranges
� UsedRange property

Range objects, Microsoft Word
� assigning
� documents, modifying and formatting elements
� loop
� overview
� redefining
� returning, using Range property
� returning, using the Range method
� stories
� using instead of Selection objects

Range Property

Microsoft Office 97/Visual Basic Programme

Index Q

A B C D E F G H I J K L M N O P Q R S T U

Microsoft Office 97/Visual Basic Programme

Index R

A B C D E F G H I J K L M N O P Q R S T U

Microsoft Office 97/Visual Basic Programmer's Guide Page 480 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

recorded expressions, removing
Recordset objects

� asynchronous running
� Dynamic-Type
� Dynaset objects
� Forward-Only-Type
� ODBC overview
� overview
� record locking
� Snapshot-Type
� Table-Type

RecordSource property
Reference objects

� collections
� overview
� properties
� referring
� setting in Visual Basic

references, Microsoft Access
Relation objects
Report objects

� creating at run time
� modules
� overview
� referring

Resource Information for Visual Basic
Resume
Resume Next
row indexes

� loop counters
� multicolumn lists
� numeric

run-time
� debugging mode
� fixing errors

Screen objects
� overview
� properties

screen updating, turning off
ScreenUpdating property
scripting languages
Section property
Selection objects, Microsoft PowerPoint

� overview
� returning

Microsoft Office 97/Visual Basic Programme

Index S

A B C D E F G H I J K L M N O P Q R S T U

Microsoft Office 97/Visual Basic Programmer's Guide Page 481 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

� returning shapes, text, and slides
� selected slides, returning
� selected text, returning

Selection objects, Microsoft Word
� extending
� methods
� moving
� objects available
� overview
� properties

Shape objects
� defined
� returning

shape ranges
� collections, applying properties or methods
� collections, loop
� constructing for specific shapes

shapes
� 3-D effects
� adding to documents, worksheets, and slides
� aligning
� animation control in slide shows
� applying properties or methods to multiple
� collections, returning
� displaying on all slides in presentations
� filling
� grouping and ungrouping
� layering
� loop
� mouse action responses in slide shows
� multiple
� overview
� pasting into document window view
� properties and methods for completing tasks
� returning in a selection
� returning objects
� selecting
� shadows
� ShapeRange construction
� SlideShow, controlling
� text, adding

sheets
� events
� properties

Slide objects
� defined
� returning
� returning, currently displayed

SlideRange objects
� defined
� returning

Microsoft Office 97/Visual Basic Programmer's Guide Page 482 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

slides
� ActionSettings objects
� activating
� ActiveX controls
� adding to presentations
� backgrounds
� colors
� inserting from Word outlines
� layout
� notes, accessing
� objects, adding
� repositioning within presentations
� returning in a selection
� shapes, controlling
� transition effects

Slides property
SlideShowView objects
Step Into
Step Out
Step Over
stored procedures
stories
Styles collection
Sub procedure, Visual Basic Editor
sub-ranges, Range objects
super-ranges, Range objects

tables
� creating with DAO code
� linking to databases
� Microsoft Word

text frames for shapes
toolbars

� buttons, indicating state of options
� buttons, modifying appearances
� combo boxes, adding and initializing
� combo boxes, modifying
� control IDs
� controls, adding and grouping
� controls, deleting
� controls, restoring
� custom, adding
� customizing guidelines
� displaying and hiding
� enabling and disabling controls
� list boxes, adding and initializing

Microsoft Office 97/Visual Basic Programme

Index T

A B C D E F G H I J K L M N O P Q R S T U

Microsoft Office 97/Visual Basic Programmer's Guide Page 483 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

� list boxes, modifying
� Microsoft Access
� Microsoft Excel
� moving and resizing
� overview
� PowerPoint
� restoring built-in
� run-time modifications
� text boxes, adding and initializing
� text boxes, modifying
� Word

URLs
� defined
� displaying Web pages or documents in WebBrowser control

UsedRange property
user guide

� conventions
� overview

user interface
� choosing the best enhancements
� Microsoft Access modification
� Microsoft Excel modification
� PowerPoint modification
� tools for modifying
� Word modification

User objects
UserForm, creating

Variant data type
VBScript

� data type (Variant)
� defined
� Variant data type
� Visual Basic features and keywords included
� Visual Basic features and keywords omitted

View objects
� defined

Microsoft Office 97/Visual Basic Programme

Index U

A B C D E F G H I J K L M N O P Q R S T U

Microsoft Office 97/Visual Basic Programme

Index V

A B C D E F G H I J K L M N O P Q R S T U

Microsoft Office 97/Visual Basic Programmer's Guide Page 484 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

� returning
� slides, activating
� view type, checking

Visual Basic
� arguments, passing to procedures
� arrays, declaring
� automating Outlook
� binding
� class modules
� code writing made more readable
� code writing timesaving tools
� concatenating strings and inserting special characters
� constants, declaring
� DAO, referring
� data type changes in Word
� data types supported
� decision structures
� differences with WordBasic
� document projects
� Editor, features discussed
� equivalents for common macros functions
� event procedures
� exiting loops and procedures
� Getting Started
� Help for Outlook
� help for writing code
� Help, displaying in Microsoft Excel
� Help, displaying in PowerPoint
� Help, displaying in Word
� loop structures
� macro recorder
� macros, comparing to WordBasic
� macros, measurements
� macros, recording
� methods, determining which to use for programming
� new procedures, writing
� Object Browser
� object models
� object variables
� OLE IDispatch Interface
� online Help tips
� overview
� programming changes in Word
� programming code between Office applications
� Project Explorer, defined
� Project Explorer, using to get around in projects
� properties, determining which to use for programming
� Public procedures
� resource information for additional help
� Selection objects

Microsoft Office 97/Visual Basic Programmer's Guide Page 485 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

� setting Microsoft Access Reference objects
� shortcut menus
� special-purpose methods for optimizing Microsoft Excel
� statement-building tools
� Sub procedures
� submenus, adding
� supporting Microsoft Excel objects
� upgrading from Microsoft Excel 4.0 macros
� user guide, organization overview
� values returned from functions
� variables, declaring
� VBScript features and keywords
� WordBasic statements and functions
� Workbook method of manipulating files

Watch expressions
Web server, setting up
windows

� debugging mode
� Immediate

WinSock control
� adding to forms
� computer name, determining
� connection requests, accepting multiple
� overview
� Protocol property
� protocols, determining
� TCP clients, creating
� TCP servers, creating
� UDP peers, creating

With statement
WithEvents keyword
wizards, Publish to the Web
WordBasic

� concatenating strings and inserting special characters
� differences with Visual Basic
� functions, using in Visual Basic
� macros, comparing to Visual Basic
� macros, measurements
� statements, using in Visual Basic

Workbook events
workbooks

� closing
� creating
� opening

Microsoft Office 97/Visual Basic Programme

Index W

A B C D E F G H I J K L M N O P Q R S T U

Microsoft Office 97/Visual Basic Programmer's Guide Page 486 of 486

file://C:\temporary\~hh5784.htm 3/20/2000

� saving
� storing

Worksheet events
worksheets

� ActiveX controls
� functions for optimizing Microsoft Excel
� HTML, creating from Microsoft Excel worksheets

Workspace objects
� ODBCDirect

workspaces, Microsoft Jet
World Wide Web, defined

There are no index entries for these letters.

Microsoft Office 97/Visual Basic Programme

Index XYZ

A B C D E F G H I J K L M N O P Q R S T U

